(/A cackaro

HP-UX Reference
Volume 1

HP-UX Reference

Volume 1: Sections 1and 9

HP 9000 Computers

HP-UX Release 9.0

HEWLETT
' (éﬁ] PACKARD
HP Part No. B2355-90033

Printed in USA August 1992

Third Edition
E0892

Legal Notices
The information contained in this document is subject to change without notice.

Hewlett-Packard Company makes no warranty of any kind with regard to this manual, including,
but not limited to, the implied warranties of merchantability and fitness for a particular purpose.
Hewlett-Packard Company shall not be liable for errors contained herein or direct, indirect, special,
incidental, or consequential damages in connection with the furnishing, performance, or use of this
material.

Warranty: A copy of the specific warranty terms applicable to your Hewlett-Packard product and
replacement parts can be obtained from your local Sales and Service Office.

© Copyright Hewlett-Packard Company 1983-1992

This documentation and software contains information which is protected by copyright. All rights
are reserved. Reproduction, adaptation, or translation without written permission is prohibited
except as allowed under the copyright laws.

RESTRICTED RIGHTS LEGEND

Use, duplication, or disclosure by the U.S. Government is subject to restrictions as set forth in
paragraph (c)(1)ii) of the Rights in Technical Data and Computer Software clause in DFARS
252.227-7013.

Hewlett-Packard Company
3000 Hanover Street
Palo Alto, CA 94304 U.S.A.

Rights for non-DOD U.S. Government Departments and Agencies are as set forth in FAR 52.227-
19(e)(1,2).

© Copyright 1980, 1984, 1986 UNIX System Laboratories, Inc.
© Copyright 1986-1992 Sun Microsystems, Inc.
© Copyright 1979, 1980, 1983, 1985-1990 The Regents of the University of California

This software and documentation is based in part on the Fourth Berkeley Software Distribution
under license from the Regents of the University of California.

© Copyright 1985, 1986, 1988 Massachusetts Institute of Technology

© Copyright 1986 Digital Equipment Corp.

© Copyright 1990 Motorola, Inc.

© Copyright 1990, 1991, 1992 Cornell University

© Copyright 1988 Carnegie Mellon

© Copyright 1982 Walter F. Tichy ,
UNIX is a trademark of UNIX System Labs Inc. in the U.S. and other countries.

NFS is a trademark of Sun Microsystems, Inc.

ii

S 3

Printing History

The manual printing date and part number indicate its current edition. The printing date changes
when a new edition is printed. However, minor changes may be made at reprint without changing
the printing date. The manual part number changes when extensive changes are made.

To ensure that you receive new editions of this manual when changes occur, you may subscribe to
the appropriate product support service, available through your HP sales representative.

August 1552. Third Edition. This edition is an update to the Second Edition and is vaiid for
HP-UX Release 9.0 on all HP 9000 systems. Replaces Second Edition, HP part number B2355-
90004.

June 1991. Second Edition. Update to the First Edition for HP-UX Release 8.05 on Series 700
systems. Also valid for HP-UX Release 8.0 on Series 300/400 and Series 800 systems. Replaces
First Edition, HP part number B1864-90000.

January 1991. First Edition. Replaces manual part number 09000-90013. Valid for HP-UX
Release 8.0 on Series 300/400, 700, and Series 800 systems. The Networking Reference was
merged into this manual at Release 8.0.

New Features
This edition contains several new features.

Typography has been changed to conform to style used in other HP manuals as well as
industry standards (conversion complete execpt for parts of Volume 3). Command names,
argument names, and such appear on the printed page in exactly the same form as when they
are typed in commands or applications, eliminating much confusion regarding capitalization of
letters, which items are literals or otherwise, etc.

Progressive bleed tabs in each section are positioned vertically on the page edge according to
the first letter in the name of the manual entry for easier access.

As part of an on-going effort to improve the quality and usability of this manual, several
entries have been expanded and rewritten for better clarity and many examples have been
added or expanded in many entries. Many changes are a direct result of comments, requests,
and suggestions from users outside of HP.

Manual is expanded considerably to conver new functionality from Open Software Foundation
and several other sources as well as newer versions of NFS Services and other software
contained in previous releases.

Do You Have Comments or Suggestions?
Comments and suggestions from users about this manual are always welcome because they
are an important part of our on-going process of improving the HP-UX Reference.

Internal HP users send electronic mail to:
hpuxref@fc.hp.com

Other users, please use the reply card provided in the manual or send a note or letter by
ordinary mail to:

HP-UX Reference Comments, MS 11
Hewlett-Packard Company

3404 East Harmony Road

Fort Collins, CO 80525-9988, U.S.A.

iii

Notes

iv

Table of Contents
for
Volume 1

Table of Contents

Volume 1

Section 1: User Commands

Entry Name(Section): name Description
INtro(1): 1ntTo . e introduction to command utilities and application programs
AAD(1): AAD ittt seiee sttt ete et ts s teste st e e s aesase et et e e et e e et st as s et e bt ate e arenesheabene absolute debugger
AdJUSE(1): AAFUBL .coiiiciiiiiiiiccciiresse et ebe e st sreesre s s e e e e be st be b ae s sbesbeesteearebensanseered simple text formatter
admin(1): adminccoooiieiieeeecrerceeeiaen, .create and administer SCCS files
alias: substitute command and/or fIIENAIMNEccveeeviiieiiiiiiiiiii e eeerre et ereeerreresare sreeesnneesesreassrnseans see csh(l)
alias: substitute command and/or flIeNAIMIEc.cecvvieiieeiceeeiceneene et bbb ern e see ksh(1)
alias — substitute command and/or fIENAMIEcocvviviiiiiiiiie e ree e esreeees see bt ssesraeeesenaenns see sh-posix(1)
alloc: ShoW dYNamic MEMOTY USAZE .ccvovevireeernririereereereniriinsertesesnsesseeseseeseesensentesessensesessessensase sossssressensontossssess see csh(l)
Ar(l): ar . .maintain portable archives and libraries
BS(1): @B civvrerrerriiinieeieer e ere st e e et e e eassesesbe b e b ebaeesseresresseesbensaessarassaese assembler (architecture dependent)
AS_B00(1): @B rerieiiie it re s e e e e e e s e be e ebeeesaabesrarbeenreesenne assembler (Series 300/400 implementation)
as_800(1): asassembler (Series 700/800 implementation)
asa(l): asainterpret ASA carriage control characters
ASEEN(1): @BETI ciiiiiiiiiieiiiiiiee ettt ettt e s sbe s sae e rbe s sbesereeersebeasssaesaesstesueesatesesrensaes translate assembly language
A(1): AL, DAECR .ottt st ceeerae e tr e eae e b e e bt b s aebeeteessensennesberseseeteanes execute commands at a later time
atime(1): atimetime an assembly language instruction sequence
APANS(1)! AETANS .ooooeicreeiiiiirceieeetestetaerecrertestsresressesesbestesassessessssassesaeneesesissnssessosuons translate assembly language
BWI(L): AWK coorie ittt et se et sre s ss e e sr e eaes text pattern scanning and processing language
DANNEE(1): DANNET ..oooviiiviriieiiieiiiereee e rteeetraestesesssesssseesesesesssessesssresersasosssesssrssessnneses make posters in large letters
basename(l): basename, dirnameextract portions of path names
batch: execute commands at @ 1atEr TIME ..c..ccuevviviiviiniiiiiiinreree ettt e et esae e seeeerenseesecaerereenes ean see at(l)

BC(1): DO ittt st st st se ettt e sn b e e e naeen arbitrary-precision arithmetic language
DAIff(1): DALEE ..oovicveiiirieieneieiiie oo stestsrastesensasststesessasssssesessasessestonssuesstsseresensentontesessessenstsstsssesnins diff for large files
BES(1): DEB coeivieieiiecteieteeeett et et e et st st ee et es et ess e sra aesbeeae s aesesaseeeere et e naesees s eneaeteaneeraesannseseeententernes big file scanner
bifchgrp: change file group reereeeeene...S€€ bifchown(1)
bifchmod(1) DIiECHMOA .oiiiieiiieeiieiie e eerie et tee seecsetreseeeseesnesseseseesseesesseesenessessressssnsenss hange mode of a BIF file
bifchown(l) bifchoWn, BIECHTIP ..ecvvrririrnrrerirerisiirieerssrersessssessessiasssesssssssesasasssessessons change file owner or group
DIFCP(1): DLECD weovrreiiieietirieeieiee e ebesr et esserterasers e e esssasesesbesesssesassessssessessesessessosesssasentnd copy to or from BIF files
bifiNd(1): DIEEIDA oot ceires sttt essteessrats sestsersresesersssesssesesssressssssenssessened find files in a BIF system
BIIS(1): DAfLB coiiiieiiiieiieiie et eee et e et ettt e eae e ereeer e ste e aesne s te s e e e ranteentesreenes list contents of BIF directories
bifmMRAIF(1): DLEIKALL .iviivvieieiiieirieiiiire it riserresssreeesseesessasesssssessnses sesssssssessssesssssssssessssessessnes make a BIF directory
bifrm(1): bifrm bifrmdirremove BIF files or directories
DPLETXMALL: TEMOVE BIF QITECEOTIES weeiviiiiiiiiiteiiteereeieeersieeseeesessssenaesesssessensssssssssenssessesssessesteessemnormrossssrsssssssens see bifrm(1)
break: exit from encloSing for/NEXt 100D ..c.cceveiveririirireiiiee ettt ete sttt stseete st ssessssssess vt entasesnesasanaes see csh(1)
break: exit from enclosing for/Next 100Dccceoirverintceereeirinieint e et et et e see ksh(1)
break — exit from enclosing for/Mext 100Pcoeereiiuiriiirinircree ettt st see sh(1)
break — exit from enclosing for/next 100pc.ccooeueuuncne see sh-posix(1)
breaksw: break from switch and resume after eNASWcccooeevvevviiviiciieiee ettt es see csh(l)
BS(1): DB i e ...a compiler/interpreter for modest-sized programs
CAL(L): QAL coeeiiiecie ettt e te ettt e et st e eree sve st b ea b s et S e s aeeaReeeaseeateekeseasaerntereseeattbeetebesbeesaes print calendar
calendar(l): calendarreinnnns .reminder service
cancel: cancel requests to an LP line Printerccvveeieniinenenieniccnieeee et esssss s st saens see Ip(1)
case: label in a sWitch Statementcccoceviiii i e e s o see esh(1)
case: label in a SWILCh SEATEIMENToooiivieiieiiiriiis sttt ere e sereesesteeeats eresnessasbeesosaesesesnsnsseasnsesan srnsens see ksh(1)
case — label in a sWitch Statementco.ceiiiiniinciiiiniiniiin e s see sh-posix(1)
CAL(L): AL coiiicieccetietetestre st aertste et et eetesbe s s b asae s et e st e e eb et be et e sttt cesent e sensentenns concatenate, copy, and print files
CB(I): OB ittt et sbe et e bbbttt e eab e saeesresnrserssens brebbeesreeernesaresasaed C program beautifier, formatter
cc(1): CC e, tererreerreirreenessesnnensenenennn O COMpiler
ccat: cat COMPACTEd FIIES ..ciciriiririiiiiriceer ettt ettt e anissrssrebaaesa see compact(1l)
CAIL): G ittt crrree e sreiresester s ebe s be e besbe s e b b e b sh s bebbebe st bt et ehe shesbebesteb et aesebestesens change working directory
CA(1): COMMANG ..oveveirerieectertier e ceceee et etbetteae sreaeteessereseetessesnessesesbessesssrassessesessersessesessesaend execute a simple command
cdb(1): cdb, £, DAD .cocociriiiiieieirereeieieeeesesese e st srassreese s esseeseene C, C++, FORTRAN, Pascal symbolic debugger
cde(1): cde i, .change the delta commentary of an SCCS delta
cd: change Working dir€Ctorycoouviiiiiiiiiiiiic et s e e e s see esh(1)
cd: change WOTKINg dITECLOTY ...c.cciecreieierieiireeieiei ettt steeretaetestestesestesassaeresbeseesbesasoncostesssnsnssnesuens see ksh(1)
ed — change WOrking dir@CtoTYccvvciireriieicre ittt et cres e s s snssasenn s see sh(1)

Table of Contents: Volume 1 v

Table of Contents

Volume 1
Entry Name(Section): name Description
— change WOrKing dir€CloTyccceeieeuiriiiiieieieie s sttt ettt e st ere st et sesesenenesesesseseassossennend see sh-posix(1)
cflow(1): cflow ...ccevvecevceennnn. ..generate C flow graph
chacl(1): chacladd, modify, delete, copy, or summarize access control lists (ACLs) of files
ChALE(1): CHALT 1ottt sttt ste s ereebesr s berssse s s serssesenssrsnasasoad change program’s internal attributes
chdir: change current WOT, i 7 tteeerereareteseisaatatossab btebeernnrte e st esar b eetesasanbtesess s sbtesasessnantbrensrnranene see csh(l)
checknr(1): checknrcccovvvevvenenne .check nroff/troff files
chfn(l): chfnchange finger entry
chgrp: change ﬁlc» BTOUP +oreeereereecerrurmecsesseeseesesoss suesesssenseoseresnsessensesstestesstssessteststsssesssostessentasssssasossorens see chown(l)
chksnmpd(1): chksnmpd ...check connectivity with snmpd(1M)
CHMOA(1): CRIMOA ...oviviiiiieieiierieiiee et ststetes s eseses e sssessesesereetasasbesesbots e st ebeseaeateseanssese sessene sesseremsonsrens change mode
chown(l): chown, chgrpchange file owner or group
chsh(1): chsh ..couveennennee. ..change default login shell

CI(1): Cd tooiiiiiieciieeieee ettt et et e eeeebeete e e s ae et et ae s aeebe e bebeaeereertaebaernnaesbeeebanaseaeren check in RCS revisions
cksum(1): cksumprint file checksum and sizes
CLEAY(1): CLEAT cvvivivreeecceeeiiceecteereet e e e tesre e etessessaessessaesessnsssassessessassesnsssreanss sbarsesssensansessesasd clear terminal screen

CINP(L): CIMD oeeevrrinrereirerierersesseseereseesessassesesseseosessassensessosessessssessossossssossessssessessesessessoseosessenseneessesonnes compare two files
cnodes(l): cnodes .. display information about specified cluster nodes
CO(L): ©O tirriiicriiectrcert ittt eeteete st esse s res e stesass sesesaste st sasentesassssensassssassesasntosassessenancsrererresesaeed check out RCS revisions
col(1): col ... filter reverse line-feeds and backspaces

COMDB(1): COMD .eiiiiiriiiiiiieeieciteserieitesiesreieesessrstestesneseessernessessessassssssessassassessessnssssssesssonsosassseod combine SCCS deltas
comm(l): COMM ..oocrereruerrirreenrerrereenrereennennes select or reject lines common to two sorted files
compact(l): compact, UNCOMPACE, CCAL ovverreverierererenrarsenereraeseons compact and uncompact files, and cat them
compress(l): compress, compressdir, uncompress, uncompressdir, zcat compress and expand data
compressdir — compress files in a direCtoTycvcvveecevierie i et ee e eseesrereesree s see compress(1)

continue: resume execution of nearest while or foreachc.cccociiiiiieiiie e e e e see csh(l)

continue: resume next iteration of enclosing for/next 100pcccoecvviiiviiiiiniii see ksh(1)
continue — resume next iteration of enclosing for/next 100p ..o see sh(1)
continue — resume next iteration of enclosing for/next 100p ...cccocvvevveenviivininniiiiii see sh-posix(1)
CP(L): D, coeeeeereeieeeertee et ere et es e ess e eteeree e e e be s aenaens ..copy file, files, or directory subtree
CPIO(L1): CDLO woviiririiirierctee et st eses et et e s e e ssessses st esssbsesnsessesessesesernasensarnsonesend copy file archives in and out
CPP(1): CPD ceeereveeee e nae s .the C language preprocessor
cps: report process statis for entire CIUSLEToccveviveieeeieieeeeee e ettt et e e et aae see ps(1)
crontab(l): crontabceeevivvneiieniinn.user crontab file
CEYPL(1): CIYDL ciiecinieiiienieniertenteestnsteessessstessesaesesssstessessesensosessessossasassessosessansessosassessesasssssessessonsd encode/decode files
csh(1): csh a shell (command interpreter) with C-like syntax
CSPIHL(L1): CBPLIE ceivciiiiiirineieiieieeiieeeeetertete sresaesaesessessesesbesbesersessbashsesestassasesbessossoss stosassasseseesseresbeneosens context split
ct(1): et e, .spawn getty to a remote terminal (call terminal)
CUAGS(1): CLAGE .evvireeceeieeeeiieiet e teteceteceestestebees b eases b etesssesbessasstessensassessseatesssessensesssossessnssesssansesnes create a tags file
CUL): QU ettt eeetee et ceseeessenesssaeseessaeesstaseenseconsnesssaesons call another (UNIX) system; terminal emulator
cue(l): cue.. ...HP Character-Terminal User Environment (CUE)
cut(1): cutcut out (extract) selected fields of each line of a file
CXPEL(1): CXTOE .oooiiiriiiieieiecieieee et s ere s s es s asas e tearesssenesteseressesesabenes generate C program cross-reference
AAREE(L1): AR oottt ee et teeteesenaae eseessreeeaeesssassresesnneseessesesneaeesessenenaesd print or set the date and time
AC(1): O teititeieieiteete sttt ettt tes ot et et sessns s et sessassese s assasee e s beneabes et easeseseneer e ee et ases et et eaerebeates desk calculator
dd(1): QA s ..convert, reblock, translate, and copy a (tape) file
default: label default in SWItch SEATEINEIIT ..uvivveveieiiie ittt e cerebe e abesenebesssbaeessseeasnss see csh(l)
delta(l): delta ...cccocirevivrecerrieeeeecnnnsmake a delta (change) to an SCCS file
deroff(1): deroffremove nroff, tbl, and neqn constructs
AIff(1): QIEE, QLEER ooviiiiiiiieiiece e errese et reeeresstesstes sesesaeesstessssssssensressnenssssssserssonssesses differential file comparator
diff8(1): Aiff3 oo ...3-way differential file comparison
diffh: differential file COMPATALOT ..c.ccivoiieiiiieieeeecreeitee e et et berissereterseseentssersesasssosessessasensassesesensescasess see diff(1)
diffmk(1): diffmkccooereeennnnes ..mark differences between files
QIrCMP(1): QLLCIMP .iovririiieie e e ceeteeer e tee e ee bt steebe st estese srbasbesbasssesssssesssassessessassesssessenssensed directory comparison
dirname: extract portions of path namessee basename(1)
dirs: print the diTeCtoTY SEACKioevvvvirriinririrteinr it sie et eeees e s et et eataes st et saeseseo e stssaenssssunoneressnen see esh(1)
disable: diSable LP PIINLETS .o..ocoviriiiereeiiesieiinreeiesteereeiesrestesessaeseensasseessesseste stenmtessessessaesecnsesereneeseenneed see enable(1)
domainname(1): AOMALINNAMEcovvrveriiriririeeiereresiereieseeresentets e stteseeteseessesesseseens set or display NIS domain name

vi Table of Contents: Volume 1

Table of Contents

Volume 1
Entry Name(Section): name Description
dos2ux(1): AOB2UX, UX2AOB ..ceveeereirerrieererieeiiiesterasseesesssssisessssseseesesssassesseseesssssesssseensonnns convert ASCII file format

doschmod(1l): doschmod change attributes of a DOS file

doscp(1): doscp ..o <ee.COPY to or from DOS files
dosdf(1): dosdfccvvvvcrvrenvirnnnnen ...report number of free disk clusters
dos1l: list contents 0f DOS QITECLOTIES ...ooviiiieii e eeeeeeete e eeesr et cesa e ss e besstesnea ses sssesanssessaesnnen s see dosls(1)
dosls(1): dosls, doslllist contents of DOS directories

doSMEAIr(1): GOBIMKALIT ..ooiiiiiiiie ettt teeetee et e et eeeteseeseeseaetenenesonaesseseaeesnesesssesssasssresanen make a DOS directory
dosrm(l): dosrm, dosrmdir remove DOS files or directories
dosrmdir: 1emOoVe DOS diT@CLOTIEScoeeviiieiiiieiieicte ettt ettt ereete e s eae v e bt ebeeseesesesaaeessenseestenson see dosrm(1)

dscopy(1): dscopycovrerrenennen .copy files between NS systems

du(l): au .coveveeneees eeteeeeereereateeeaateeseeneesternasaenesreestenaesrraans summarize disk usage
dumpmsg: create message catalog file for modlﬁcatlon see findmsg(1)
€ChO(1): @CHO wovveeitieiececceee et eene ..echo (print) arguments
©cho: €Cho (PIint) ATZUMENTS ...ovvvceiriiriiieceieeseintieieseerioraesestesaerestestesassessesasssssassaseasssssseossrnasesserassessseraesesnes see csh(1)
echo: echo (print) argumentssee ksh(1)
echo — echo (Print) AYGUMENTScciveiiieerriniiiieie st e eresces e st et eb bt asar e b saerensrossnabessrsns s see sh(1)
echo — echo (print) arguments .. .see sh-posix(1)
A1) @A, TOA ..ottt et ettt ettt ses et e bee e se b ek e s eaessaee s ke sea s et ahes st eseseare b ek ersaeeaeat b es e e ceeesanen text editor
EAIE itieieiiie it eete e e ee v e b et b e ettt e eae e eer s sebeeete seatsea st ea ben At ehbeerbesbe s bt e s beasae e bt Aeaeseateeresanbesatesernbeiataeanreas see ex(1)
egrep: search a file for @ PAtEINlccooiiieee et st e et see grep(1)
elm(1): elm ...cccevvueunrrreerenanes ...process mail through screen-oriented interface

elmalias(l): @lMAali@sccccvvivreeiiiieicreeeiicre e serr s ereebesereesseeensaens create/verify elmuser and system aliases

enable(1): enable, ALSADLE ...cecciieciieereeeieeeierecreereceteeteseecterseenterssssassesreensessesnsesanses enable/disable LP printers
endsw: terminate SWItCh SEAtEIMENEccociirvieietii ettt et s et e teaare s erer s st ssaeenend see esh(1)
end: terminate foreach or WHile L00Pvceiiieiieceniiie ettt sttt st eese e s s e ese s snsnsennone & see csh(1)
ENV(L)! BRIV ot ettt e es et et st e e et ee e s e set environment for command execution
eval — read arguments as shell input and execute resulting commandsc.cocoueeeveeirorecrenerceeereisirnnenene see sh(1)
eval - read arguments as shell input and execute resulting commandssee sh-posix(1)
eval: read arguments as shell input and execute Tesulting/ccoeeeieerereenrierceeenerirnr e eresereesessereseone see csh(1)
eval: read arguments as shell input and execute resulting commands ...see ksh(1)
EX(1)! @X ettt es e ceenestext editor

......... see sh(1)

exec — execute command without creating new process ...
.see sh-posix(1)

exec — execute command without creating new process ...

exec: execute command without Creating NEW PrOCESScveiierireiierierierenieiresrecereseeenessiesresesesseseseesersenens see esh(1)
exec: execute command without creating new processsee ksh(1)
exit: exit shell with exit statusccccocoeiiieeeeceeeinnn,see esh(1)
exit: exit shell with exit statussee ksh(1)
exit — exit shell with exit statussee sh(1)
exit — exit shell With eXit STATUS .vcccoiii ittt et er e evtesea see srbeeas smeesseaenanens see sh-pos1x(1)
expand(l): expand, UNeXPAndccceeveveereireireerinreeseeee e eneeeaesneeneens .expand tabs to spaces and vice versa
export: export variable names to environment of subsequent commandscccoeeceeveeviinenneiennnnn. ..see ksh(1)
export — export variable names to environment of subsequent commands . ..see sh(1)
export — export variable names to environment of subsequent commandscccoeovvinciiriiinninnn. see sh-posu:(l)
EXPI(1)! @XDT eoirtiririteiieriereseeietetesretnete e eresasteseserseresberae s ete b sbetestenbensesaserns evaluate arguments as an expression
eXPreserve(l): @XDTE@SEIVEcccciiiiiiiiiererereeereeeeeesstessaeseaesreesesssesssesessesssesssassseessessesesnes preserve editor buffer
f77(1): £77, fort77FORTRAN 77 compller
factor(l): factor, Primesc...ccceieenenne .factor a number, generate large primes
false: do nothing and return non-zero exXit SEALUScccevereriieieiereeieriee e s eieiereere s st sresesnae st eseraens see true(1)
fc: edit and execute previous COMIMANGccocceeiriiiieeeriee e seeessereereesbes e seseesernsesaessanssessesesarnras see ksh(1)
fc — edit and execute previous command . ..see sh-posix(1)
fgrep: search a file for & String (FASt)ccoceveeiiieniiiceeierceereeer e ceeeere s s ssn e beseeseaessesassssneeneseanes see grep(1)
file(1): file .oovoeoiiiiiieiereene. ..determine file type
BNA(L): FIRA ittt as s e e b e ses st et ssesaseeseb a8 es £ ebe s aeseeeese e st et aseaen b enesee i crentatene find files
findmsg(1l): £indmsg, QUIPIMST ...cvveoevererreemererereeriereseerernessoseenersensnes create message catalog file for modification
findstr(l): findstrfind strings for inclusion in message catalogs
BNEEr(1): FINGET .ottt et se e ess s se s eassres b ssenserensa user information lookup program

fixman(l): FIXMAD .ccriiriiiiiie e ere s fix manual pages for faster viewing with man(1)

Table of Contents: Volume 1 vii

Table of Contents

Volume 1

Entry Name(Section): name Description
FOlA(1): £OLA .ottt sttt r bt eneanar s fold long lines for finite width output device
FOXAEI(1): EOTAOL oottt et et tese e et etaeesaeasstsssteestesessesssssnesnesnsessessoassssesssesnd convert file data order
foreach: initiate TEPEtItIVE 100Dcuvieveirrieiiieieeie ettt ettt et asnns e see esh(l)
FOT: XECULE @ 0 TISE wouvevviviieiciiciiiec ettt et b st sttt st st st eseesteb s beneerersenreas et st sasa s see ksh(1)

for - execute a do list

£Ort77: FORTRAN 77 COMPILETovrvevieeiveniereiiieeeiesiesinsies e sesesssesessesssessesesassssnsessasesassesesssssesessnsssessesasssnssanns see 77(1)
FPOM(L): ETOM wooiiiiiciicieiietcice ettt et e s ee e s et e s e st e sassnassstssasarbesassseseninnasend who is my mail from?
fsplit(1): £splitsplit £77, ratfor, or efl files
FEIO(I): RO ittt ettt st ettt seae et et s bbbt sb e st e et st et nae s s et bensbtasecreas sbtsnnete faster tape I/O
FEP(1): EED oottt ettt e s es sttt s ae e st re s b en e et s e b et assseantsasesetebeebeneen file transfer program
gencat(l): gencatgenerate a formatted message catalog file
get(l): getcovvneveinnnens ..get a version of an SCCS file

BetaceeSS(1): GOLATTEBS .ottt s saraes et es e sesst st necaet b sass b st eene list access rights to file(s)
getconf(1): getconfget POSIX configuration values
getconteXt(1): GELCOMEEXE ..civeviiieiieiecieeiee et aee et ese et ses b sts et s enssetteneane sasnneas display current context
EOLOPL(1)! GELODE .eovvvreiiiiiiitiree e st et etesrere e st eseaesrs et sssesessesesesesbesasssbesssseserarsasetesaeneranrans parse command options
getopts(1): getoptsparse utility (command) options
getprivgrp(l): getprivgrpget special attributes for group
glob: eCho WItROUEL "N\ @SCAPES ...cvcveirieeieicecretee ettt e teste st aeb e reeasereerraeseenesressesessessesessessessensesessessend see csh(l)

goto: continue execution on SPeCIfied LNE ...ccoeeiviiriciiiinieriet ittt et sret et esre e enses see csh(1)
gprof(1): gProf ...cccevveeniieeineinn .display call graph profile data
Erep(l): grep, €gTeD, £GTEPD ..occcciviirieiiecrieie ettt eeee e st e sssstessasbestsease sbesssnsensennees search a file for a pattern
grget: get password and group informationccooviiiieeeereie e e see pwget(1)
Eroups(l): GTOUDS ..occiiieeieirereeeererasesite e ssne s resensssenes ...show group memberships
hashcheck: create hash codes from compressed spelling JiStccceveveeerenrneeeermeiie s ceeeeeas see spell(1)
hashmake: convert words to 9-digit hashcodessee spell(1)
hash — remember command location in SEarch Pathcccecereririrnieieieneecesee st e sassaesersesaesassessesessansens see sh(1)
hashstat: print hash table effectiveness StatiSticscccoivverininiiennen ettt s see csh(l)
head(1): headcccvvveevvcreeieeeeieeereeee print first few lines'in a file
REIP(1): BELD tocicicriieteee ettt ettt ettt s e s e stesteaesae e rsssene shertes b ereetea s ebe she st entesesrebberbebetersereshesrenberes ask for help
history: Display event DIStOTY TISE ..c..ccecoueerrieeieriieirirnsies e ee et escesessaereseressesassesesassssessesnsseseseseseesemensesend see esh(l)
hostname(1): hOSERAMEcccceceveririririricenreieeeseeeereseresee s s sessssessenes set or print name of current host system
hp(1): BD ot handle special functions of HP 2640 and HP 2621-series terminals
hp9000s200: provide truth value about your processor typecoceereerrirerenrenierinesnerscesreenesesseseeseens see machid(1)
hp9000s300: provide truth value about your processor typesee machid(1)
hp9000s500: provide truth value about your processor typesee machid(1)
hp90002800: provide truth value about your processor typesee machid(1)
hp-mc680x0: provide truth value about your processor typesee machid(1)
hp-pa: provide truth value about yoUT Processor tYPeccceceeervrieriecrrrrseeneeteessesasessessesassessessoses see machid(1)
hyphen(1): BYDReRc.coiiiireceiiireeinnieeereieesieererisseaessessesesssssssessessersesessinserssossonsess seesses find hyphenated words
1COMV(1): LOOMV eoiiciiiiiicee ettt et ettt ettt e s e ses s es s sesebesnnesesastesessnsseeans character code set conversion
id(1): id............. .print user and group IDs and names
TAENE(L)! LAGIE .ottt ettt st se sttt eebe s etm e sk sses ess s et s st semen identify files in RCS
ied(1): ded .. e ..input editor and command history for interactive programs
if: execute command if eXpression eVAILALES tIUEc.cvvveveveirrerier ettt es e rere b s esesssaesssssresnssesesesseuan see csh(l)
if — execute command if previous command returns exit status 0 . ..see sh-posix(1)
if: execute command if previous command returns exit Stattus 0ccoeerevereiecrieiceiie et see ksh(1)

..display bit-mapped images file on an X11 display
..use findstr(1) output to insert calls to catgets(3C)

imageview(1l): imageview ..
insertmsg(l): insertmsgcccoveveeveennns

inv: make unprintable characters in a file INVISIDIEccceeveeiiirieeeeeieiee et reesaeeaese s sreaens see vis(1)
HOSEAL(1): ZOBLAL oottt st ea et n e s e a e ebe et et s e b es s et es et et s spatene s sresenan report [/O statistics
ipcrm(1l): ipcrmTemove a message queue, semaphore set or shared memory id
IPCS(1): ©DCB ittt et s s report inter-process communication facilities status
ISQL(LY: LBQL ceoiiiiieiercetee et e ese et sesbesbessstesssaboseorerseneanesresanaeen ALLBASE/SQL interactive SQL interface
JODS: LISt CEIVE JODS 1uvveeiereuiuiiietiiier vttt ettt ese s seesess et s srsesese e sesestessner st esesbensses s et eaanrasenreresseraren see csh(l)

JODSI LISt ACEIVE JODS .ecvevrriiiierieiricieteceitet it ettt et s e aestee st srebeses e besae e be et st s et esernetesese st sareerernanenen see ksh(1)
jobs — list active jobs see sh-posix(1)

vili ‘ Table of Contents: Volume 1

Table of Contents

Volume 1
Entry Name(Section): name Description
JOIM(1): JOIM ittt et et e b e et s b s s et anas relational database operator
kermit(1): kermitKERMIT-protocol file transfer program
KEYSI(1): KOYBR ..ottt ettt e sne st et seebe s beenaeard context-sensitive softkey shell
KII(1): RILL oot et bees e see s haesbse s bens bbb ebasassenbss et anesnsasanesesssnsnnensed terminate a process
kill: send termination or specified SIgnal t0 @ PrOCESSccicveeireeiericeeenrirereriretsreaeses e eaneeresasseressesesassesees see csh(l)
Kill: terminate Job OF PIOCESSc.ccnirciriiiniieirinerinieretieeiesiteseenstsrsssesesesssotesessssss st et sossussessssnsssassusnesesssens see ksh(1)
kill — terminate Job OF PrOCESS ...cciiveiiiicreiiiiiieriieer it eier s st s seseseasses sessssssoasens sisesasssuesd see sh-posix(1)
lesh(1): ksh rksh ... » standard/restricted command programming language
lastcomm(1): 1aSTCOMM ...ooveeirreereeeeeietrereer e s berbesr e show last commands executed in reverse order
LAL): L@ ettt s e b bt s st kst bk e e as b b e et AR e be e bR e se a s eteeehre R aresetetene link editor
leave(l): leave remind you when you have to leave
let: evaluate arithmetic EXPIeSSIONccouiiiiiiererieiriinmirecntnestieescreerer st scs e esere et ssssseraess it ssnsassessssssnss see ksh(1)

let — evaluate arithmetic expression . .see sh-posix(1)
1eX(1): 1@X corveeiiieieciete et err st e r st b shas b et ererbenes generate programs for lexical analysis of text
1iblu62.a(l) - IBM APPC (Advanced Program-to-Program Communications) APIcc.ccceneeeeuernrererens see sna(l)
BIFCP(1): LEEOD covioiieiiciictiiiee et ettt er e et saseve st teb e ses bbbt stevassstebassssnnsansrseseneants copy to or from LIF files
lifinit(1): lifinit .. .write LIF volume header on file
lifls(1): 1ifls cccccovmvenveennn, ...list contents of a LIF directory
lifrename(1): LifTeNamMecccccooiiririririeinieereeeerereeesiteeeesaesessesese srssesasassssesssssasessssess seseasosasensens rename LIF files
BLIFEM(L): LEETI oottt sttt ettt eeaesreebesbe e sessenseebesaseebesbasseeraesbernseneersereensennnensen remove a LIF file

line(1): 1ine ..ccooovovovovririrveirenns .read one line from user input
lint(1): 1lint ..eovoreeenen.a C program checker/verifier
lintfor(1): lintfor FORTRAN inter-procedural checker
LSP(1): LABPD cooorieiiceecceeriee e sttt etessessse s sesr b e aessasseaeebobsesssans st s asestesansenessasssesesen sns HP Common Lisp environment

lispbench(l): 1ispbenchciciiriiirmieeeernieiesenesessseseesssssessussosesesssesosessasenn Lisp SoftBench interface tool
1: list CONtENtS Of AITECLOTIES ...vcviverrereieiiereeriniiieestererestereessbeseseeteressesesesssssresessestss srasasesessesessssssosassssesesrenssecncsens seels(1)
11: list CONTENS OF QITECLOTIES ..ievveruiiiireeiereeriicieiee e crree e et ssesbe e et besearseovesuessnossessrasnnss ssssesansesons secsnts seels(1)
IN(1): LD ettt et ettt b et sr e a e e b e s be s e sa et b b e eteere shebsebeaenees s erensassrsersennies link files and directories
locale(1): locale............ ...get locale-specific (NLS) information
TOCK(I): LOCK cuiieiieieeie ettt teetetteae bt e s st st sena e saeass s eseasessenssnnsenesat st sresssssonsesnsstessensaees reserve a terminal
logger(1) logger ..make entries in the system log
login(1): loginJlogin in on system
login: terminate Iogin Shellcc.iviiiviiniiiiiinicicne et et see e caeb st seas et evsssne s see csh(l)
logname(1): lognameget login name
logout: terminate Jogin Shell ...t s see csh(l)
lorder(1): lorderfind ordering relation for an object library
Ip(1): 1p, cancelsend/cancel requests to an LP line printer
lpalt: alter requests to an LP iNe PrINLET ...cccccoeverieiniiniieirninrrsietee st sreraneeersstssereseseesesiesesseserassssssesscsessond see lp(1)
Ipfilter(1): 1pfilterccveeoennn. filters used by the lp interface scripts
lpstat(1): lpstatprint LP status information
1s(1): 1s,1,11, 1sf, 1sr, 1sxlist contents of directories
Isacl(1): 1saclcooumnn... .list access control lists (ACLs) of files
1af: list CONtents Of AITECEOTIESccoveiiiiertrieeii ittt ee ettt eee ettt te st basesbescanebese e aeseassensnseseseesssenersanesend see 1s(1)
1sr: list contents of directoriesseels(1)

1sx: list contents of directoriesseels(1)
INA(L): M4 oottt e ete et she b eb s b teaae b et et eae shs st et beabberbereeebestenaseshenbaetensesraesteanee MAacro processor
machid(1): hp9000s200, hp9000s8300, hp3000s500, hp9000s800,

PAPLL, U3D, UBDSE, VAX ..veecreirrirreiireeereeniienseererosresssessrsssse senses provide truth value about your processor type

mail(1): Mail, TMALL (oot sttt et e s v sbeneses e s s b s e rannan s send mail to users or read mail
mailfrom(1): mailfromsummarize mail folders by subject and sender

Mailstats(1): MALLBEALS (oot ses et sees st sess e ssercsseseemesenend] print mail traffic statistics
MAailR(1): MATIX .ooveriireriereriinriieerereereereeenieesraestssesssosesarsaesessassassssessesassassenses interactive message processing system
make(1l): makemaintain, update, and regenerate groups of programs
MAKEKEY(1): MAKEKEY ..cceovvreerireeiiinieeirtrstiieretasseessesessessesrsessesasesssssssesssssessssssersasssasessensans generate encryption key
man(l): manfind manual information by keywords; print out a manual entry
mediainit(1): mediainit ..o, initialize disk or cartridge tape media, partition DDS tape
METEE(1)] METGE oottt ettt seetasnss s st e aaesbetasesessssesebesaesesaesesassssssesasneresesessetansaeses] three-way file merge

Table of Contents: Volume 1 ix

Table of Contents

Volume 1

Entry Name(Section): name Description
MESE(L): MEBG weeevereurerneririieeatstereseststessssesessetesasssestssssssassssssssersesssrssssessesanses permit or deny messages to terminal
INIAI(I): IRALT oot teereees e st aeeeesetesnnrsesettessssenssnesesasueaessssesenseten srsssassnsesensnesnns make a directory
mkfifo(1): mkfifo make FIFO (named pipe) special files
MIME(L): IRIME oovooeveeeeeciritieeeeeres st eeesreose et eesssessaeesesssssssenssecosssese eresssssssssesssesstssanssosssessassnsesseoss make a makefile
mlestr(1): mkstr ... t error messages from C source into a file
mktemp(1): mktempcccevrreererrererrnnne ... make a name for a temporary file
mkuupath: manage the pathalias databaseo.eoccccrveiriniienincnieeii et saesees see uupath(1)
mm(1): mm 0882 e “heck documents formatted with the mm macros

file perusal filter for crt viewing
..magnetic tape manipulating program
.move or rename files and directories

more(l): more, page
mt(1): mt ..
mv(1): mv..

neqn(l): neqnformat mathematical text for nroff
NEtSEAL(1): MELBLAL ..ccvciiveiieteeie ettt creeee e e te e s seteseeeae serabese e s ae s eese e e sresaesnessesaenrannes show network status
newform(1): newformchange or reformat a text file
NEWEEP(1): DEWTITD .ociviiiiiiirieiie ittt ettt ecetee s s crteeen et b besesbee e seb bbb et r e enssussbsrssone log in to a new group

Newgrp: equivalent 10 @XeC MEWGTD -.c.cccvvcverriiriirierciererireeie e sttt eoesrere et erensseresessesensesestsessssasscresasssnend see csh(l)
newgrp: equivalent to exec newgrpsee ksh(1)

NEWOTP — eqUIVAIENT 10 @XOC MEWITD ...ooceieerieiierietecrtirte et eave st et stssvesresseessnenbesbessaoressnessssassonsrsessansssessas see sh(1)
Newgrp — eqUivalent t0 @XeC DEWGTD ..cccoccirieerieieee ettt eetreee st e es et este s e asresenesae et ebbenne see sh-posix(1)
newmail(l): newmailccoocvenn ...notify users of new mail in mailboxes

NEWS(1)! TOWS ..oviviirieiiitiiieniestntistestesenetete st testeeseseertess suesbesssee steserasssestetsstssestsstssesassavassssstssaonessossessssed print news items
nice(l): nicecccovvieeneee run a command at low priority

nice: alter commAand PHIOTIEY ...ccoveviiririenierioieineninitee et et sttt sttt e e e e ses st sba e se srebeoss shssbonassssbssasssros see csh(l)
TL(L): DL oo et bee st s beabb b e b s ar s et b e bt eR e r s b beebasebesernbe b s aeetan srreares line numbering filter
DIHUSL(1): DLIUSE oottt sret et ter v eres s eesesb b seresesssnsensersnns Jjustify lines, left or right, for printing
NIsinfo(1): DISINFO .cciicieeieeecerietire sttt et eanea s es et ene e display native language support information
nm(1): nm ..., print name list (architecture-dependent general entry)
nm_300(1): nmprint name list of common object file (Series 300/400)
nm_800(1): nmceeee ...print name list of common object file (Series 700/800)
nodename(l): NOAERAMEcceoeuieierirerrercnrererireeieierierereseeessssasesestsessesaseesenes assign or return network node name
Nohup(1): DORUPovveveveveiieeeierere s esneneens ..run a command immune to hangups, logouts, and quits
nohup: ignore hangups during command eXECULIONecivvereeierirrerierieereeninrsesseseesirsessestssessessonsescossssssessasecas see csh(l)
notify: notify user of change in job statussee esh(1)
NPOIE(1): DIOEE oooeeiiriieceiieite et etssseresattesoseaesssserotaressssaessates saesensssssorsssessssssessressesssessssssesssasnsrnssenses format text
nslookup(1): nsloockup . query name servers interactively
OA(L): O, KA .ovireiirieiecreneerrer e sres e s tebsss e ebs e s seee sberabassesesebsesesassssrsasessasanssssnansrsnnanss octal and hexadecimal dump
on(l): om evveeriereeecreee e execute a command on a remote host; environment similar to local environment.
onintr: specify shell’s treatment of INLEITUDPTSccocveieriieeieienirieieereeine e creresesesesee e sisbesesnssesesnesons see csh(1)
Pack(l): pack, PCAt, UNDACK ...cccccevvirerrieneeiiniseeeseeeiseenssssesseseseseessesessosesrsnsassessessesenes compress and expand files
padem(1l): pademccoerimrmrevennnns ...Pad emulation for X.25/9000 interface with PAD support
page: file perusal filter for Crt VIEWINGoceeieviiiriiieceerieiieteste it ettt ctrete st setasestosaentesestssasasssesanns see more(1)
PASSWA(L): DPASBWA oottt st tes et eestse s s s s sasesrseeseeses e sene saesensssesssssents change login password
paste(l): paste merge same lines of several files or subsequent lines of one file
Pathalias(1): PAtBALiasccccovoiiieriiieeiiiriiinieeeerreese e stesreresvessersesessesassesressessssessessassoss electronic address router
pax(l): pax portable archive exchange
Pe(1): PO e ..Pascal compiler
pcat: compress and eXPand fIlescc.coieiintiniiirc i e e e eresaes e aene see pack(1)
pdp11: provide truth value about YOUT PrOCESSOT LYPE ..c.ooveeererererierreereieieieirreeeeeeneseasesetseesesesessssnsasses see machid(1)
PEL): DO ettt enree et tetaese st e sesnes s sesesas esssnat et e sesessesancesesaensd file perusal filter for soft-copy terminals
popd: pop directory stack ... et ettt eteeeebebeteresaeheeheatenreaeehes b et b eae et eabebeeRsekessens ehen st seasebenberesaesaesben see esh(1)
PPL): DPDL ottt e sns s e e et sttt seessass st e s e nesaasatnsa ened] point-to-point serial networking
pplstat(l): pplstat ..give status of each invocation of ppl
PELUL) DI tiriieieeieiteteee st ete e etestet e e stee st et eae s seessesaras st assesasbere et arsaraeee et esaeaeeresbessesearansetarearsenan format and print files
praliases(l): praliasesprint system-wide sendmail aliases
Prealloc(1): PLEALLOC ..uccviiieierieeerreeieteeeeer et seetereessesetesesessssseteses e ne sresesensesasassessenes preallocate disk storage
primes: generate large prime NUMDETScccooioviiieieieiiier et es s et saresae st ssenssesseneseesenencs see factor(1)
PrintenvV(l): DIINLERV ..ottt st et ta st see bt st es st s ees e sbeesneseaeen print out the environment

X Table of Contents: Volume 1

Table of Contents

Volume 1
Entry Name(Section): name Description
PrINtE(1): @CHO .ottt et sttt sane e bt an ..print formatted arguments
print: output from SHellcociiiiiiiiiiiiic e s b ser s e be b see ksh(1)
print — output from Shell ...t e e e e e see sh-posix(1)
prmail(1): prmailprint out mail in the incoming mailbox file
PEOF(1): DIOE woiriiiinreeeiseestcieetetesreeiesre tetestessaeseesbeseseteetassesbenbaebaesseessessareesrsensestesssersenssnsesassensand display profile data
protogen(l): protogen . ANSI C function prototype generator
PUS(L)I DIB ciiiiiciriiiicnie et sttt et er sttt ettt nse st aenstes b een et sasssannnassaaas print and summarize an SCCS file
B (L) BB e et e st st es e s snan s s aessarsnnnessesssssensererenne oo TEDOTT DYOCESS Status
psale(1): psqlc, psqlpas, psqlfor,

PSAICbl .o preprocess C, Pascal, FORTRAN and CoBOL ALLBASE/SQL source programs
psqlcbl: preprocess COBOL ALLBASE/SQL PIOSTAINS ...c.ccouirieeeuereristereressisienasssssasesstsssssssssssssssmssssserenss see psqle(1)
psqlfor: preprocess FORTRAN ALLBASE/SQL programsc.......see psqle(1)
psqlpas: preprocess Pascal ALLBASE/SQL programs rereaee b aeeraetese e e e sres e base e ee e st saeanu shenats see psqle(l)
PEX(L): DPEX oot et e eb e .permuted index
pty: get the name of the pseUdo-tEIMINALccoveviviiieiriiiiecee et estesasebesasesasesereessssesesussesnenenss see tty(1)
PUShd: PuSh dIreCtory SEACKcceeveiiriirreccccerirne et ettt s eres bbb seneses ot snmesesseresusbsovesinssnen see csh(l)
PWA(L): PWA oot eet et ctes s sse e sassetsesestessess srassersessssessesesnsesensrsassses .working directory name
pWd: print current Working QiFECtOTYc.cccciveeceerireirirerierireieresee e stesesssesesassesessssasesssensassrsencssorasessssssnessed see ksh(1)
pwd — print current working directorysee sh-posix(1)
pwd — working directory name rereeeernrene et ebetuee o et e e s e s ebeb et et as en et b et eherberesberes see sh(1)
pwget(l): pwget, grget et boeget password and group information
QUOLA(1): QUOLA oovieiuciiiiieiieneniiitiecie ettt tes e ebe b s s bt st e et s bbb aer bbbt sbstsasanas display disk usage and limits
ratfor(l): ratforxational Fortran dialect
rep(1): rep ... OO PO SOOO O RROROROTPOUPROIPRNe remote file copy
res(l): res e, .change RCS file attributes
resdiff(1): resdiffcompare RCS revisions

resmerge(l): rcsmergemerge RCS revisions
read: input and parse a line reeeerere ooy bebesae b a b s e s saasstsesanene e see ksh(1)
read — input and parse a line ettt st st ben s st b ne s ees see sh-posix(1)
readmail(1): readmailread mail from specified mailbox

readonly — mark name as read- (;nly e see sh(1)
readonly — mark names as unredefinable ..see sh-posix(1)
readonly: mark names as unredefinablesee ksh(1)

read — read line from standard input
red: restricted ed text editorsee ed(1)
rehash: recompute internal hash table ..ottt st s s ene s see csh(1)
remsh(1): remsh execute from a remote shell

renice(l): renicecoenrnnien .alter priority of running processes
repeat: execute command MOTE tham ONICEoooiiieiiiiiiiecceeeeeccte e e e sr e beesbe s st sabasessesnnses see csh(l)
return — exit function with return valueccoovveeevircennnenencre e ROV see sh(1)
return — shell function return to invoking SCriptcccoeveveeervveenrinenrceereeeiene ..see sh-posix(1)
return: shell function return to INVOKING SCIIPL ..v..ccveveveerieeiriiereeietereeterce et e srereesssetssseseseesassesecssseneene see ksh(1)
FOV{L): L@V oottt teeeresests e eaessens e esasaesonseassanesos ...reverse lines of a file
rksh: restricted Korn shell command programming 1anguagec.ccoceevveeeneivirenemrvenivinisnnenseranes e see ksh(1)
rlog(1): T1OG o s print log messages and other information on RCS files
FIOGIN(L): TLOGIIM woeiriieirie it cteee s et ecaesbebesbesaestebesbesb et bess sbesbessaresusasasaersssensesessesaressessarssesessensase remote login
rm(l): T e e .remove files or directories
rmail: send mail to users.or read Mail ...t e s e s see mail(1)
rmMAel(1): IIMAL ...cooiiiiiriirererceeeretrnrierinteesestesaraereesesseseseressesasesresssaseseseanaseseencns remove a delta from an SCCS file
PINAIC(1): TIMALT oottt sret e esssas b e e s ssebsasasteteans b eb e st e eneseat e ateesensenn remove directories
rmnl(1): rmnlremove extra new-line characters from file
FPCEEN(L)! TDOGEOD ..ovvivviiiieeniiieteriiteseseseetetesaasessessossese seessessesessesensssessessmnssssssssnsesssssstaens an RPC protocol compiler
rsh — restricted shell command programming languageccocovvviiiiininiiii see sh(1)
FEPrio(1): TEDPTIO worioiiieccc ettt re e esen et e execute process with real-time priority
rup(1):rup . reereeons ..show host status of local machines (RPC version)
ruptime(1): rupt:.me .. show status of local machines
rusers(l): TUBeTrs ... determine who is logged onto machines on the local network

Table of Contents: Volume 1 xi

Table of Contents

Volume 1

Entry Name(Section): name Description
rwho(1): rwho ... U .show who is logged in on local machines
sact(l): sactprint current SCCS file editing activity
SAL(1)] BAT oottt e et et re sttt ase et sa et eh et et s et s e arae e esen et et bebabesesenenn system activity reporter

scesdiff(l): scesdiffcompare two versions of an SCCS file

Seript(1): BCEIDE oovvirorireirise e .make typescript of terminal session
sdfchgrp: change group ownershlp of an SDF fileoviieiniiiiiiiniec e see sdfchown(1)
Sdfchmod(1): 8ALCHMOA .ucveuiviceieeniiiri et sire ettt s isbe et b s ete e e sesesatasasesenssasnsnens change mode of an SDF file
sdfchowii{l): SAfchown, SAECHGTD ..oiioiiieieeieeeeeeee et e aeae s change owner or group of an SDF file
sdfep(1): sdfcp, sdfln, sdfmvcopy, link, or move files to/from an SDF volume
sdiﬁnd(l) sdffind . Hetetteeutehte teate e te e ehe tbaeaeereeateartenaestesaresatesaess et eesesrae seerasensernenes find files in an SDF system
sdf11: list contents of SDF du‘ecwrles e eteeeteeeabe e e ai b tetaettesn——eeenateete tearaaessiabaes senetesensessanrensnseesannassersaesd see sdfis(1)
sdf ln. link files in 8N SDF VONIIME ...coueveemireiieiieeeteseneieeeteaesteneessesessssassesssanssseestssesosasssssnsnsnsesenessanseosnes see sdfcp(1)
sdfis(1): sdfls, sdf11llist contents of SDF directories
SAfMKAIr(1): SALMKALT oovveriieiireiieicrieecrere ettt st ens s stssesse sesessssssessosesssosssssnsonsssonsond make an SDF directory
sdfmv: move files t0/fTOm AN SDF VOIUINE ..ocoveevcvvieieieeieeiceiceeescoeeeesrveaeesneseesssesesseseeserssonsasesssss sosnsessssns see sdfcp(1)
sdfrm(1): sdfrm, sdfrmdir remove SDF files or directories
8Afrmdir: remove SDF dir€CtOTIESccceceiiveiverereerenieneeseereesreerersesssessaresesssssessessesesssessesessesessessaneesed see sdfrm(1)
sdiff(1): SAiffccvverrivernnnrinnne ..side-by-side difference program
SEA(L): BOA ettt sttt et b bbb st st s e e st et a e bbb seaebtete e sasebessresebet et ene stream text editor
setenv: define environment VATIADIEcccoiveiriiiiiri et e aa et ee e s tee s s e nan see esh(l)
set: set/define flags and AYUIMENLSc.ccivrieiririicriircee et eeres e resastessesaebassessssaavassessssaraenessassense seessores see csh(1)
set: set/define options and arguments see ksh(1)
set — set/define options and ArGUMENLScoiviiniierntnene ittt serericr e ees e aseetss s senssesesesesssnsnssesns see sh(1)
set — set/define options and ArGUMENEScccuovcceieieeereer ettt s s st ees s st s eressesaseseeansans see sh-posix(1)
sh(1): sh ... et b e ettt An e bR bR e e bR s et et e et b et bn s overview of various system shells
sh(1): sh,rsh .. shell, the standard/restricted command programming language
SRAP(1): BRAT .coceeieiirririenteirie e sreereresteeeeesber e besresaetsbebebars ebe e er s be et beb e s esbetaentesesaen .make a shell archive package

shift — shift argv members one position to 1eftccccouiieeininecene e e see sh-posix(1)
shift: shift argv members one position to left ceeneeee8€€ csh(1)

shift: shift argv members one position to leftcccoeeeeene.see ksh(1)
shift ~ shift positional parameters to next loWer POSILION ...c.vveveccevereriererciniiirecesneere st erernseetsrseseenensnes see sh(1)
SRI(1): BRL oottt et r b s bttt s b e s b aereeteteesesenanenne shell layer manager |
showedf(1): ShoWeAfoooiiiiiiiicec e er e show the actual path name matched for a CDF
sh-posix(1): sh.......... shell, the standard/restricted command programming language
SIZE(1): BLZ@ ittt ettt b e st e s asas ek e st e aasaeneres print section sizes of object files
sleep(1): sleep - ...suspend execution for an interval
SIP(1): BID ottt are st snsbe s set prmtmg options for a non-serial printer
sna(l): sna3179g, sna3270, sna3770 . .IBM 3179G/3192G, 3270, 3777 terminal emulator
SOELIM(1): BOELAM oottt et e et e ere st e eneeess sssenseste sressesssnniad eliminate .s0’s from nroff input
softbench(l): softbench .. .SoftBench Software Development Environment

SOrt(1): SOTL .cccevvvirneriierirereeisieennas ...sort or merge files
source: define source for COMMANA INPULcovvveeceerirircirnieeeiern sttt eresiereessesaasaesesessssesessesssssaencnsesend see csh(1)
spell(1): spell, hashmake, spellin, hashcheckfind spelling errors
spellin: create compressed spelling list from hash codescvvevviiiviiiinicnnicne see spell(1)

SPHE(1): BDLAE ittt sttt et ettt ettt st s e b et ssans e s nen split a file into pieces
sqlgen(1): sqglgen. ..generate command files to unload, reload ALLBASE/SQL DBEnvironment
sqlmig(1): sqglmig ... maintain and configure an ALLBASE/SQL DBEnvironment
sqlutil(1): sqlutilmaintain and configure an ALLBASE/SQL DBEnvironment

SSP(1): BBD creeeeerieeiereriete ettt et et et et aesaaeassere et et e saenaeies remove multiple line-feeds from output
Strings(1): SETINgS .cccccvcverniiieieieice e find the printable strings in an object or other binary file
strip(1): stripstrip symbol and line number information from an object file
SEEY(1): BEEY weoiccreieiieccreeier it seenrereeresrertere bt bes s eaesaesrensosesrontoresasasentonssrsenensonssrned set the options for a terminal port
SU(L): BU coeeiiieirceniecnreetnteeeereree st st esssete et s e te st etessaassansnsentssssesesssabeseseseteseaeans become super-user or another user
sum(l): UM ..coooovrrrecereerireernrnenns .print checksum and block count of a file
switch: define sWitch SEAtemMENtccciveeuieeiiiiiieir ettt es s bt et sbesnae st s e see csh(1)
BADS(1): £ADB ..ottt ettt ettt e st et sh b s s e ae b s ars e sasbeeebes bt sen e et seseerrenees set tabs on a terminal

EAIL(1): LALL oot ettt ce e te s et esrereebeebeseeraereshebaensesesbersereetesbersensanatd deliver the last part of a file

xii Table of Contents: Volume 1

Table of Contents

Volume 1
Entry Name(Section): name Description
BAX(1): CAT ettt st tes et s st sesssnsesess s seesen s e DAPE filE€ @TChiVeT
EBL(L): EDL oottt s sres bt v ettt saeb b e b e es e et erb et s e b et sae b s e et sreraesaenabent format tables for nroff
teio(1): tcio . Command Set 80 Cartridge Tape Utility
BEE(1): £ oottt ettt et sttt ea s s et e s ese e et arseeebsane e R aaeserteRse st en et ek st et ssatenes pipe fitting
telnet(l): telnetccoeovrereevennn, ..user interface to the TELNET protocol
BESE(1): £@BE oottt st sttt et ee b e s seen st esaessaeseneesrseeneasnntead condition evaluation command

cerenreenenS€€ sh-posix(1)
eeeneennnSee csh(l)

test — evaluate conditional expression

tost: evaluate conditional expression ...

test: evaluate conditional expressionc.cceeervrucenns ettt e et s bs e ae st sanesba she s nead see ksh(1)
EEED(1): EEED cooierieieiice ettt v et seere et et beaesrerees s s s e tesereasererensetenned trivial file transfer program
BIME(1): EAME cooioiiiiiiciiiieei ettt r e easeeaee sateereseaeeers s eaeee et e e sate st e seattertae b be ettt reerbsnren time a command

time — print accumulated shell and children process timesccccovecerrirerneicrcrcrcenneeecre e siensesenenes
time: print summary of time used by shell and children ...

times — print accumulated user and system process times . see sh(1)
time, times — print summary of time used by processessee sh-posix(1)
time, times: print summary of time used by Processesceceeiiecceriininneeiine s s see ksh(1)
timexX(1): CiMeX .ooiveerieiereree ettt time a command; report process data and system activity
EOP(1): £OD vttt e display and update information about top processes on system
touCh(1): £OUCh .ccoviviciicie ettt ettt update access, modification, and/or change times of file
EPUE(1)I EDUEL ottt ettt ettt e bbb aaes ene saa e sers st esanenseteseas et steeeneneaes query terminfo database
BE(L)! BT ettt ettt e s e et st st et s s et ases e s araraesesnasesesseesessaneneneanneee e LT ADIS]ATE Characters
trap — execute command upon receipt of SIENAlccoccuiriiiieni ittt e e eees see sh(1)
trap: trap specified SIZNAIccouirimiiiicii ettt et st e ae see ksh(1)
trap — trap specified SIZNALc.ccooiiiiiiie ettt ettt e e e see sh-posix(1)
true(l): true, falsecveeeeereriineernenns return zero or non-zero exit status
tset(1): tSet ..viivieericieie e terminal-dependent initialization
ESIM(L): £BIM covvreeierirrierirerietieesestestntesses s tassareesessasserasssseesessassessssessssestassensesessesnessnssssensenee Terminal Session Manager
tsm.command(1): tsm.commandceeeeeirienneneeereiennn send commands to Terminal Session Manager
tsminfo(l): £8M.info .o i get Terminal Session Manager state information
ESOTL(L): LBOTEL .eeereriiiiiiectierenrcr ettt e erer s e s tes e sess st sessenssnsesensane sasensssssensessessnsenrenenserennene snneens SOPOlOGICAl SOTE
BEY (1) EEY, DEY cooeeeirirceceiecert et e st eeeessass b essa s nsasessrebesssbearsnebesesresesseresessnsosd get the name of the terminal
tEYtYPe(l): LEYEYDE cooirieiieeeeteetere et eer s een s terminal identification program
typeset — control leading blanks and parameter handlingcccoccocevnirininniciiiecnncrene e see sh-posix(1)
typeset: control leading blanks and parameter handling see ksh(1)
type — show interpretation of name as if @ COMMANGcvoviereveiirieiiieeierrceeeeet st rs e s esaressennesas see sh(1)
u3b5: provide truth value about your processor typesee machid(1)
u3b: provide truth value about your processor type see machid(1)
BL(1): UL ettt ettt et r e vt e bes st ereab et reeteneaseres st s ensebesenseaesseseasesres bt sersererten do underlining
ulimit — impose file size limit for child Processescovoirreiniirecrirrcer e e sese s see sh(1)
ulimit: set 81Z€ OF tIMe HIMIES ..o.eviererietiieiiic ettt ettt st et ee e sse et st ess i s s e sasbetens see ksh(1)
ulimit — set $ize Or tme HIMILS ...ccoviiiiieriiiiee e et sesa st cbetbeesevesbes e resaersnesesessessrassne see sh-posix(1)
umask(1): umask ...ccccooevevernnrivenininieree e ..set file-creation mode mask
umask — set permissions mask for creating new filesccccvevvrinninninncin s see sh(1)
umask — set permissions mask for creating new files .. .see sh-posix(1)
umask: set permissions mask for creating NEW fllesccoveeererirerinerinincecier e s see esh(1)
umask: set permissions mask for creating new filescoocueirieeeiierreiiieieeee ettt eb s see ksh(1)
umodem(1): UMOAEMcovvemrervrerenierrenesrierereererens XMODEM-protocol file transfer program
unalias: discard SPECIfied AIIASccoeceeeeuiiciericeier e eter e et s tee sttt sre s nebesseserensenernnteasene see csh(1)
unalias: discard specified aliassee ksh(1)
unalias — discard specified Aliasccoivirvrcrnniiiiieere et es e s e e s see sh-posix(1)
uname(l): unameccceeennnne ...print name of current HP-UX version
uncompact: UNCOMPACE fIIES ..c..eviiiriiiiieeiticre et se et e st r e s ess e e s ssestnsaessastesnenne see compact(1)
uncompressdir — expand compressed files in a directory ... see compress(1)
uncompress — expand compressed dataccceeevrrrverennns ..see compress(1)
unexpand: convert SPACES t0 tADSo.cceeeiiiieic e sttt er e re e see expand(1)
unget(l): ungetccovevniriirnrieinnenns ..undo a previous get of an SCCS file
unhash: disable use of internal hash tablescccivieeiriiiicerieir et e e s sns see esh(1)

Table of Contents: Volume 1 xiii

Table of Contents

Volume 1

Entry Name(Section): name Description
UNIFAEf(1): UDIEAEE .oicviviiiieiiciicieeeee ettt ettt saeesaee st steese s eessesraeestsssbessasessnessrenaessss remove preprocessor lines
uniq(1): uniqreport repeated lines in a file
UNIES(L): WDLAES oottt eeee st te e bt ssset e steeeesstes esasteessnesesnsaeseesseeesssssesssssreesssnsesense conversion program

unpack: compress and expand files ..

unsetenv: remove variable from environmentoovevvennee.

unset: remove definition/setting of flags and argumentssee csh(1)
unset — remove definition/setting of options and ArGUIMENTS .o.oveviinviiieniiiie et eraaae see sh(1)
unset — remove definition/setting of options and argumentsccococeeeveieiicinneie e see sh-posix(1)
unset: remove definition/setting of options and argumentsc.ccoovivciiciiiinniinn see ksh(1)
until - execute commands until expression is NON-ZETOccceverervvesercirinene ..see sh-posix(1)
until: execute commands until expression is non-zero et eeeieeerteetireraraeeteet e nnteeeesarrraaeeeserberaeaaasanrraeas see ksh(l)
UPtIME(1): UDPEIME .ooeoiiiiieieciiie ettt ettt be s bt s et senseneeaee show how long system has been up
users(l): userscvenven. .compact list of users who are on the system
uucp(l): uucp, UUlog, UUNAMEcvereeeerrereanennsUNIX system to UNIX system copy
uudecode — decode a file encoded by UuenEOdeccoveviiivrerreiiiiniiriciien e see uuencode(1)
uuencode(l): uuencode, uudecodeencode/decode a binary file for transmission by mailer
uulog: access UUCP SUMMATY 10ZS ..ccccovvuiririerrieeirinnicnenietieieeenesiereseeesmieseesessessssesaessesssnssiossosssscssssasesend see uucp(l)
uuname: list KNOWN UUCP SYSEEINS ...vcveevieiiiriiiieeteiiestetreneeeeesreereesiestesssessasssesssesassassssssessessssssassessssssanssesens see uucp(l)
uupath(l): uupath, mkuupathcccceerervrneens ..access and manage the pathalias database
uupick: accept or reject incoming UUCP MESSAZEScveeverermrecnierereecueseeremeeeseeisiioseenssesisssssssssnissssensonnns see uuto(1)
uustat(l): uustat ettt et et tae b e aeste e aebe st eraesaeeeneeneessanne uucp status inquiry and job control
UULO(1): WUEO, UUPICK .ioeeeiiiecererinreteieieseeesennsereesesaessnsessessnnsaneesees public UNIX system to UNIX system file copy
UuxX(1): UUX oo e .UNIX system to UNIX system command execution
ux2dos: convert ASCII file fOrMAat ...c..ccviiirieiiiirir ettt et sass st sbbe e o b sbeon see dos2ux(1)
vacation(1): VACALION ..ottt terae s srecassers enseesbaereesnnes return “I am not here” indication
VAL(I): VAL ittt ettt bt e s tes et e st st bsae e st et ettt et s eneaetesesenesnsenennenend] validate SCCSs file
vax: provide truth value about your processor typeccccoveevcrniiiiciininnninassee machid(1)
VO(L): WO ittt st cete e st e s ettt b ettt st et se et sen e sa s nne .version control
vedit — beginner’s (visual) diSplay €dItOTccocovrrirvrrirrreresioninrinreeenerecee st crestesisresrsasese st srssnessenns s enes see vi(l)
VI(1): Vi it screen-oriented (visual) display editor
view — read-only (Visual) diSPlay €dItOrcoceveeririirirverrersiiennrieeseeineeesseriereesessesiesessesassessessessosessessmssssenasses see vi(1)
vis(1): vis, inV .o .make unprlntable characters in a file visible or invisible
VINSEAL(1): VINBEAL eovieiiccieieiice sttt sttt s bt et b e e report virtual memory statistics
VE(L): WE otieecteiee e ee et et ceestcreeteseereessbe s s sne e besserbeseessas sasesbeneebentansenbeseesesnensraesen log in on another system over lan
VESK(L): VEBK oot eerr e eer e et sberensae s eres virtual terminal facility from HP-UX to MPE HP 3000).
WAIE(1): WALE oeereeeiiiece ettt e e e eve et e b ettt seeseetsessasseeessesesseesseseassessensenes await completion of process
wait: wait for backgroUnd PrOCESSEScevverieiiiiriveeieniirieeireinerereesesrnsessessessesesessensaseesesseseseosesssessosesnssuosd see esh(l)
wait: wait for child processsee ksh(1)
wait — wait for child processcccoerernicrrnerecneennee ..see sh-posix(1)
wait — wait for process and report termination SEALUScccecriireerieniiireeneene et cers e e sreeeaeeas see sh(1)
WEC(L): WC cireeteiieietntiee e ereeeeeresee b e be e b e b beae ebeebeereeebesseessensaesbeneeeseeesasseereesreannesressrnnes word, line, and character count
What(1): What .ottt aeoseeas get SCCS identification information
whence — define interpretation of name as a commAandccoccevrvreceevnrinrerirnniiiesesrereeserecsressecasenenens see sh-posix(1)
whence: define interpretation of name as a comMMANAc.c.ecereuieeeeierieeireee ettt seseesrerenenenne see ksh(1)
whereis(l): whereis .. <eeennJOCAte source, binary, and/or manual for program
Which(1): Which .ot eneier s eaeeenas Jocate a program file including aliases and paths
while — execute commands While eXpression is NON-ZETOccoceveeerireerereeerireercreeineire s seseenesens see sh-posix(1)
while: execute commands while eXPression iS NON-ZET0cccc.ivmriceererieienieneieereereese et sses et iesereseeanes see csh(1)
while: execute commands while eXPression is NOM-ZETOcceevviververiririreeieiinr et seere st esesneresssesssnene see ksh(1)
WhO(1): WHO oottt s ernr s erereeseese srerase s ...who is currently logged in on the system
Whoami(l): WhOAML ...ccoeieviericcriereritcei et et raeste s s eses et besssscstseeneneecsesenes print effective current user id
WEILE(1): WELEEE oottt eens et essres st s saes sassenssenesersseeanes interactively write (talk) to another user
x25stat(l): x25stat . ..display interface status, configuration, and VC statistics
XAPES(1): XATGE .oovevirienierireererieerrenisessessrnessese s sesesseserssssesennes construct argument list(s) and execute command
xdb(1): xdbC, C++, FORTRAN, and Pascal Symbolic Debugger
XA: heXadecimal QUIPoocoeeiiiiicitiii et ster et e vt aeassse et eesesssasnsseressasesessarssssastrasessnsassessesnares see od(1)
XSE(L): XBET toovvierereiieiieesinaeecreaeaserrsrnatessereenenns extract strings from C programs to implement shared strings

xiv Table of Contents: Volume 1

Table of Contents

Volume 1
Entry Name(Section): name Description
VACC(L): WACC ittt sttt sttt et teab ettt s b eseeseabessshe s b e et abe st e e e s yet another compiler-compiler
FES(1): WOB coivirciiiirieieriee st et sreberesbe bt bese s sbebbass stesbensesesreresne sresseseens snennennnne oo @ TEPELitively affirmative
FPCAL(L): YDCAE oiviiieviiiiiieeieeieteeteteete sttt st sren s stesnesevesvessennas print all Network Information Service map values
ypmatch(l): ypmatch print values of selected keys in Network Information Service map
YPPassWA(1): yPPABBWAcovereciiient et eae e change login password in Network Information System
ypwhich(1): ypwhich ..ccocvvviiicicienneiiennnn. list current Network Information System server or map master host
zcat: expand and Cat data ..ot e e a0 see compress(1)
Section 9: Glossary
Entry Name(Section): name Description
INEXO(9): ANETO creieiiiiiieiie ettt et st st e s baae s e et e et st st sasaasssesbeens introduction to the glossary section
ZLOSSATY(9) ..eooiviieieie et ce et sttt e ettt eaeae e eeaeese s araesae s Eensea b aeasesh e ernesee st e b et s snaesueeraseresans glossary of terms

Table of Contents: Volume 1 XV

Introduction
to
HP-UX Reference

INTRODUCTION

The HP-UX operating system is Hewlett-Packard Company’s implementation of an operating system origi-
nally based on UNIX* System V Release 2, with important features from Berkeley Software Distribution 4.2.
The HP-UX operating system has been evolving for nearly a decade. Literally thousands of bug fixes on the
original code, countless internal improvements, plus a large selection of enhanced capabilities and other
features developed by HP, other companies, educational institutions, and standards organizations have
combined to form a robust operating system that is compatible with numerous industry standards.

Release 9.0 of the HP-UX system contains features from:
* UNIX System V Releases 2 and 3, plus features similar to those found in Release 4.
¢ Features from Berkeley Software Distribution 4.2 and 4.3.

¢ Software subsystems from Open Software Foundation, Inc. (OSF), Carnegie-Mellon University, Cornell
University, Massachussetts Institute of Technology, and numerous other commercial and educa-
tional firms and institutions.

¢ Complete or partial conformance to numerous industry and international standards including, but
not limited to AES, SVID2, XPG2, XPG3, XPG4, FIPS 151-1 and 2, POSIX.1, POSIX.2, and ANSI C.

This combination makes HP-UX a very powerful, useful, and reliable operating system capable of supporting
a wide range of applications ranging from simple text processing to sophisticated engineering graphics and
design, as well as commercial business applications. A broad selection of interfaces and network support
capabilities make the HP-UX system suitable for solving tough problems in design, manufacturing, business,
and other areas where responsiveness and performance are important.

HP-UX systems are now commonly used in scientific research, automated manufacturing, business manage-
ment information systems, military applications and space exploration, computer-aided engineering and
sofware development, telecommunications, automated merchandising networks, and numerous other appli-
cations. Extensive international language support enables HP-UX to interact with users in any of dozens of
human languages.

HP-UX interfaces easily with local area networks and resource-sharing facilities. Networking, based on
industry-standard protocols, provides flexible interaction with other computers and operating systems.
Optional software products extend HP-UX capabilities into a broad range of specialized needs.

This manual is not intended for use as a learning tool for beginners. It is a reference guide that is most
useful to experienced users of UNIX or UNIX-like systems. If you are not already familiar with UNIX and
HP-UX, refer to the series of Users Guides and other learning documents supplied with your system or avail-
able separately. System implementation and maintenance details are explained in the HP-UX System
Administrator manuals normally furnished with each system.

* UNIX and System V are trademarks of UNIX System Laboratories, Inc..
! See STANDARDS CONFORMANCE later in this introduction.

Review Version: Post-8.0 -1- 1

Introduction Introduction

MANUAL ORGANIZATION

Due to the size and complexity of the HP-UX operating system, the HP-UX Reference is divided into
several sections contained in three volumes. Volume 1 contains User commands in Section 1. Sections 2
(System Calls) and 3 (Function Libraries) are in Volume 2. These topics are of interest mainly to pro-
grammers. Volume 3 contains a potpourri of subjects not contained in the first two: Section 1M (System
Administration Commands) is related to system installation and maintenance. Most commands in this
section require super-user privilege before they can be used. Section 4 (File Formats) is of interest mostly
to administrators and programmers. Section 5 (Miscellaneous Topics) contains a haphazard collection of
miscellany of interest to widely various users. Section 7 (Device Files), like Section 4, contains informa-
tion commonly needed by administrators and programmers. The Glossary in Section 9 is also of interest
to a variety of users, but is not a simple beginner’s definition of terms. Rather, it contains often very pre-
cise definitions of terms as used in the HP-UX environment. A separate Table of Contents and Index is
provided for each respective volume to assist you in finding needed information. The index to Volume 1
also contains references to built-in features in the various command interpreters ("shells").

Section 1 (User Commands) describes programs that are usually invoked directly by users or from
command language procedures, as opposed to system calls (Section 2) or functions (Section
3) that are called by user and application programs. Most heavily-used commands reside in
the directory /bin (for binary programs). Other less frequently used programs reside in
/usr/bin to save space in /bin and to reduce search time for commonly-used commands.
These directories are normally searched automatically by the command interpreter called a
shell (sh(1), csh(1)), ksh(1)), or other command interpreter facilities. Most other Section 1
commands are located in /lib and /usr/lib. Refer to hier(5) and tutorial manuals supplied
with your system for more information about file system structure.

Section 1M (System Administration Commands) describes commands used for system maintenance
including boot processes, crash recovery, system integrity testing, and other needs. This
section contains topics that pertain primarily to system administrator and super-user

tasks.
Section 2 (System Calls) describes entries into the HP-UX kernel, including the C-language interface.
Section 3 (Functions and Function Libraries) describes available functions that reside (in binary

form) in various system libraries stored in directories /lib and /usy/lib. Refer to intro(3C)
for descriptions of these libraries and the files where they are stored.

Section 4 (File Formats) documents the structure of various types of files. For example, the link edi-
tor output-file format is described in a.out(4). Files that are used only by a single command
(such as intermediate files used by assemblers) are not described. C-language struct
declarations corresponding to the formats in Section 4 can be found in directories
fusrf/include and /usr/include/sys.

Section 5 (Miscellaneous) contains a variety of information such as descriptions of header files, char-
acter sets, macro packages, and other topics.

Section 6 (Games) is absent because no games are currently supported on HP-UX.

Section 7 (Device Special Files) discusses the characteristics of special (device) files that provide the

link between HP-UX and system /O devices. The names for each topic usually refer to the
type of VO device rather than to the names of individual special files.

Section 9 (Glossary) is located in Volume 3 after Section 9. It defines selected terms used in this
manual.
Index An alphabetical listing of keywords and topics based on the NAME line on the first page of

each manual entry as well as other information. The right-hand column refers to the
manual entry name (Section number is in parentheses).

Each section (except 9) contains a number of independent entries usually referred to as manual entries,
but also called manpages or manual pages. Each manual entry consists of one or more printed pages,
with the entry name and section number printed in the upper corners of each page. Entries are arranged
alphabetically within each section of the reference, except for the introductory entry at the beginning of
each section. Textual cross-references to other manual entries are of the form pagename(nL) where n is the
section number and L is a letter representing a subsection where applicable. For example, io_burst(3I)

2 -2- Review Version: Post-8.0

Introduction Introduction

refers to an entry in the Device I/O function library (Section 3, subsection I) named io_burst.

Each printed page has two page numbers printed at the bottom of the page. The center page number is
numbered starting over with page 1 at the beginning of each entry, and is placed between two dashes in
normal typeface. Another number in bold is printed at the outside corner on each page. This page number
is part of a continuous sequence as in a normal book, and is primarily for the convenience of support and
manufacturing personnel. Normal users most typically locate entries by the alphabetical headings at the
top of the page as when using a dictionary.

Some manual entries describe two or more commands or routines in a single entry. In such cases, the entry
is not duplicated for each topic, but appears only once, usually arranged under the first keyword appearing
in the NAME section of the entry. Occasionally, an entry name does not appear on the NAME line. In such
instances, the name describes the keywords in more general terms such as the entry for acct or acctsh in
Section 1M or string in Section 3.

SYSTEM STANDARDIZATION

This reference is based on extensive system-design control documents that have been used to ensure
software compatiblity across HP-UX computer model lines, as well as with widely used industry standards.
HP-UX is compatible with the UNIX System V Interface Definition (SVID), but also includes many popular
features from the Berkeley Software Distributions (BSD), plus HP and other enhancements for international
language support, and numerous other features which are now specified by industry and international
standards.

As of this printing, HP-UX has been implemented on HP 9000 Series 200, 300, 400, 500, 600, 700, and 800
computers. This document is valid for HP-UX Release 9.0 on Series 300/400, 700, and 800 systems.

Page Headers
Great effort has been expended to make the HP-UX operating system compatible between all series. How-
ever, there are significant hardware differences between various series, making some features that may be
highly desirable on one series inappropriate or useless on the other (such as isl(1M) or hpuxboot(1M) utili-
ties used on Series 800 that have no meaning for Series 300 systems). If an entry pertains to one or more,
but not all series, it is clearly noted at the top of each page of that entry.

Some entries in this manual pertain to optional software subsystems (such as LISP, for example) that are
not normally shipped with HP-UX. Such manual entries are clearly marked as such. They are provided
here for the convenience of users whose systems have the optional software installed on them.

Review Version: Post-8.0 -3- 3

Introduction

Introduction

MANUAL ENTRY FORMATS

All manual entries follow an established topic format, but not all topics are included in each entry.

NAME
SYNOPSIS

DESCRIPTION
EXTERNAL INFLUENCES

NETWORKING FEATURES

RETURN VALUE
DIAGNOSTICS

ERRORS

EXAMPLES
WARNINGS
DEPENDENCIES

AUTHOR

Gives the name(s) of the entry and briefly states its purpose.

Summarizes the use of the entry or program entity being described. A few
conventions are nsed:

Computer font strings are literals, and are to be typed exactly as they
appear in the manual (except for parameters in the SYNOPSIS section of
entries in Sections 2 and 3).

Italic strings represent substitutable argument names and names of
manual entries found elsewhere in the manual.

Boldface is used primarily for new terms the first time they are used. in
some entries in Volume 3, boldface is used for literals where the conversion
to computer font was not completed in time for this edition.

Square brackets [] around an argument name indicate that the argument
is optional.

Ellipses (...) are used to show that the previous argument can be repeated.

A final convention is used by the commands themselves. An argument
beginning with a dash (-), a plus sign (+), or an equal sign (=) is often taken
to be some sort of option argument, even if it appears in a position where a
file name could appear. Therefore it is unwise to have files names that
begin with -, +, or =.

Discusses the function and behavior of each entry.

Information under this heading pertains to programming for various spo-
ken languages. Typical entries indicate support for single- and/or multi-
byte characters, the effect of language-related environment variables on
system behavior, and other related information.

Information under this heading is applicable only if you are using the net-
work feature described there (such as NFS).

Discusses various values returned upon completion of program calls.

Discusses diagnostic indications that may be produced. Self-explanatory
messages are not listed.

Lists error conditions and their corresponding error message or return
value.

Provides examples of typical usage, where appropriate.
Points out potential pitfalls.

Points out variations in HP-UX operation that are related to the use of
specific hardware or hardware combinations.

Indicates the origin of the software documented by the manual entry.

-4 - Review Version: Post-8.0

Introduction Introduction
FILES Lists file names that are built into the program or command.
SEE ALSO Provides pointers to related topics.
BUGS Discusses known bugs and deficiencies, occasionally suggesting fixes.

STANDARDS CONFORMANCE For each HP-UX utility, function, or other component addressed by one or
more of the following formal and defacto industry standards, this section
lists the standard specifications to which that HP-UX component conforms.
The organization which produced the industry standard is shown below in

parentheses.

The meanings of the notations used for the various standards are:

AES

SVID2

XPG2
XPG3
XPG4

FIPS

POSIX.1

POSIX.2

ANSI

Application Environment Specification, Operating System
Programming Interfaces Volume, Revision A (OSF).
Currently supported only on Series 300, 400, and 700 sys-
tems.

System V Interface Definition Issue 2, Volumes 1-3
(AT&T).

X/Open Portability Guide Issue 2 (X/Open, Ltd.)
X/Open Portability Guide Issue 3 (X/Open, Ltd.)

X/Open CAE Specifications — System Interface Definitions,
and System Interfaces and Headers, Issue 4 (X/Open,
Ltd.)

151-2 Federal Information Processing Standards 151-1
and 151-2 (National Institute of Standards and Technol-
ogy)

IEEE Standard 1003.1-1988, IEEE Standard 1003.1-1990,
and ISO/EC 9945-1:1990 (IEEE Computer Society and 1SO)
IEEE Standard 1003.2-1992, and ISO/IEC 9945-2:1992,
including all options except the Localedef and User Porta-
bility Utilities Options. (IEEE Computer Society and
ISO/EC)

C American National Standard for Programming
Language C and ISO/MEC 9899 (ANSI X3J11 and ISO)

The table of contents included at the beginning of each volume contains a complete listing of all manual
entries in the order they appear in each section, as well as alphabetically intermixed lists of all keywords
that appear in manual entries covering multiple keywords. This combination provides an easy path for
locating commands and features whose keyword names are not the same as the title heading on the

corresponding manual entry.

Review Version: Post-8.0

Introduction Introduction

HOW TO GET STARTED

This discussion provides a very brief overview of how to use the HP-UX system: how to log in and log out,
how to communicate through your machine, how to run a program, and how to access an electronic copy of
this manual on your system. If you are a beginning user, refer to other tutorial manuals for a more com-
plete introduction to the system.

Logging In

To log in you must have a valid user name, which can be obtained from your system administrator. Press
the BREAK key to get a login: message if it is not present.

When a connection has been established, the system displays login: on your terminal. Type your user
name then press the RETURN key. If a password is required (strongly recommended!), the system asks for
it, but does not print it on the terminal.

It is important that you type in your login name in lowercase if possible. If you type uppercase letters, HP-
UX assumes that your terminal cannot generate lowercase letters, and treats subsequent uppercase input
as lowercase. When you have logged in successfully, the shell displays a $ prompt unless programmed for a
different prompt (the shell is described below under the heading: "How to Run a Program").

For more information, consult login(1) and getty(1M), which discuss the login sequence in more detail, and
stty(1), which tells you how to describe the characteristics of your terminal to the system (profile(4) explains
how to accomplish this last task automatically every time you log in).

Logging Out

You can log out by typing an end-of-file indication (ASCII EOT character, usually typed as control-d) to the
shell (see csh(1) and ksh(1) for information about ignoreeof if you are using C shell or Korn shell). The
shell will terminate and the login: message will appear again.

6 -6- Review Version: Post-8.0

Introduction Introduction

How to Communicate Through Your Terminal

HP-UX gathers keyboard input characters and saves them in a buffer. The accumulated characters are not
passed to the shell or other program until a RETURN is typed.

HP-UX terminal input/output is full-duplex. It has full read-ahead, which means that you can type at any
time, even while a program is printing on your display or terminal. Of course, if you type during output, the
output will have the input characters interspersed in it. However, whatever you type will be saved and
interpreted in the correct sequence. There is a limit to the amount of read-ahead, but it is generous and not
likely to be exceeded unless the system is severely overloaded or operating abnormally. When the read-
ahead limit is exceeded, the system throws away all the saved characters.

Erase, Kill, and Output Stop/Resume Characters

By default, the character @ "kills" all characters typed before it on an input line from the terminal. The
character # erases the last character typed. Successive uses of # will erase characters back to, but not
beyond, the beginning of the input line; @ and # can be used as normal text characters by preceding them
with \ (thus to erase a \, you need two #s). These default erase and kill characters can be changed, and
usually are (see stty(1)).

The ASCII DC3 (control-S) character can be used to temporarily stop output. It is commonly used on video
terminals to suspend output to the display while you read what is already being displayed. You can then
resume output to the display by typing a DC1 (control-Q). When DC1 (control-Q) or DC3 (control-S) are used
to suspend or restart output, they are not sent to the keyboard command-line buffer for passing to the pro-
gram. However, any other characters typed on the keyboard are saved and used as input later in the pro-

gram.

Interrupt and Quit Characters

The ASCII DEL character (sometimes labelled "rubout” or "rub") is not passed to programs, but instead gen-
erates an inferrupt signal. This signal generally causes whatever program you are running to terminate. It
is typically used to stop a long printout that you don’t want. However, programs can arrange either to
ignore this signal altogether, or to be notified when it happens (instead of being terminated). The editor
ed(1), for example, catches interrupts and stops what it is doing, instead of terminating, so that an inter-
rupt can be used to halt an editing operation without losing the file being edited.

The quit signal is generated by typing the ASCII FS (control-\) character. It causes a running program to
terminate.

End-of-Line and Tab Characters

Besides adapting to the speed of the terminal, HP-UX tries to be intelligent as to whether you have a termi-
nal with a new-line (line-feed) key, or whether it must be simulated with a carriage-return and line-feed
pair. In the latter case, all incoming carriage-return characters are changed to line-feed characters (the
standard line delimiter), and a carriage-return/line-feed pair is echoed to the terminal. If you get into the
wrong mode, see stty(1). '

Tab characters are used freely in HP-UX source programs. If your terminal does not have the tab function,
you can arrange to have tab characters changed into spaces during output, and echoed as spaces during
input. The stty(1) command sets or resets this mode. The system assumes that tabs are set every eight
character positions. The fabs(1) command can set tab stops on your terminal, if the terminal supports tabs.

Review Version: Post-8.0 ~-7- 7

Introduction : Introduction

How to Run a Program

When you have successfully logged into HP-UX, a program called a shell is monitoring input from your ter-
minal. The shell accepts typed lines from the terminal, splits them into command names and arguments,
then executes the command which is nothing more than an executable program. Usually, the shell looks
first in your current directory (discussed below) for a program with the given name, and if none is there,
then in system directories. There is nothing special about system-provided commands except that they are
kept in directories where the shell can find them. You can also keep commands in your own directories and
arrange for the shell to find them there.

The command name is the first word on an input line to the shell; the command and its arguments are
separated from one another by space and/or tab characters.

When a program terminates, the shell will ordinarily regain control and prompt you with a $ (unless
redefined to some other prompt), to indicate that it is ready for another command. The shell has many other
capabilities, which are described in detail in sh(1).

The Current Directory

HP-UX has a file system arranged in a hierarchy of directories. When the system administrator gave you a
user name, he or she also created a directory for you (ordinarily with the same name as your user name,
and known as your login or home directory). When you log in, that directory becomes your current or work-
ing directory, and any file name you type is assumed to be in that directory by default. Because you are the
owner of this directory, you have full permissions to read, write, alter, or destroy its contents. The permis-
sions you have in other directories and files will have been granted or denied to you by their respective own-
ers, or by the system administrator. To change the current working directory use cd(1).

On-Line Reference Manual
The HP-UX Reference is also available on-line by using the man(1) command if manual entries are present
on the system. Refer to the man(1) manual entry in Volume 1 for more information.

Path Names

To refer to files not in the current directory, you must use a path name. Full (absolute) path names begin
with /, which is the name of the roof directory of the whole file system. After the slash comes the name of
each directory containing the next sub-directory (followed by a /), until finally the file name is reached (e.g.,
lusr/ae/filex refers to file filex in directory ae, while ae is itself a subdirectory of usr; usr is a subdirectory
of the root directory). See the glossary (Section 9) for a formal definition of path name.

If your current directory contains subdirectories, the path names of files therein begin with the name of the
corresponding subdirectory (without a prefixed /). Generally, a path name can be used anywhere a file
name is required.

Important commands that modify the contents of directories are cp(1), mv(1), and rm(1), which respectively
copy, move (i.e., rename, relocate, or both), and remove files. To determine the status of files or the contents
of directories, use Is(1). Use mkdir(1) for making directories, rmdir(1) for destroying them, and mv(1) for
renaming them.

For a more complete discussion of the file system, see the references cited at the beginning of the Introduc-
tion above. It may also be useful to glance through Section 2 of this manual, which discusses system calls,
even if you don’t intend to deal with the system at that level.

8 -8- Review Version: Post-8.0

Introduction Introduction

Writing a Program

To enter the text of a source program into an HP-UX file, use vi(1) (preferred by most users), ex(1), or ed(1).
The three principal languages available under HP-UX are C (see cc(1)), FORTRAN (see f77(1)), and Pascal (see
pc(1)). After the program text has been entered with the editor and written into a file (wWhose name has the
appropriate suffix), you can give the name of that file to the appropriate language processor as an argu-
ment. Normally, the output of the language processor will be left in a file named a.out in the current direc-
tory. Since the results of a subsequent compilation may also be placed in a.out, thus overwriting the
current output, you may want to use mv(1) to give the output a unique name. If the program is written in
&ssen{bly language, you will probably need to link library functions with it (see ld(1)). ForTraN, C, and
Pascal call the linker automatically.

When you have gone through this entire process without encountering any diagnostics, the resulting pro-
gram can be run by giving its name to the shell in response to the prompt.

Your programs can receive arguments from the command line just as system programs do by using the arge
and argv parameters. See the supplied C tutorial for details.

Text Processing

Almost all text is entered through a text editor. The editor preferred above all others provided with HP-UX
is the vi editor. For batch-processing text files, the sed editor is very efficient. Other editors are used much
less frequently. The ex editor is useful for handling certain situations while using vi but most other editors
are rarely used except in various scripts.

The following editors are the same program masquerading under various names: vi, view, and vedit (see
vi(1)), ex (see ex(1)), and edit (see edit(1)). For information about the streaming editor sed, see sed(1). The
ed line editor is described in the ed(1) manual entry.

The commands most often used to display text on a terminal are more(1), cat(1), and pr(1). The ca?(1) com-
mand simply dumps ASCII text on the terminal, with no processing at all. The more(1) command displays
text on the terminal a screenful at a time, pausing for an acknowledgement from the user before continuing.
The pr(1) command paginates text, supplies headings, and has a facility for multi-column output. It is most
commonly used in conjunction with /p(1) to pipe formatted text to a line printer.

Inter-User Communication

Certain commands provide infer-user communication. Even if you do not plan to use them, it would be
beneficial to learn about them, because someone else may direct them toward you. To communicate with
another user currently logged in, write(1) can be used to transfer text directly to that user’s terminal
display (if permission to do so has been granted by the user). Otherwise, mailx(1) or mail(1) sends a mes-
sage to that user’s mailbox. The user is then informed by HP-UX that mail has arrived (if currently logged
in) or mail is present (when he or she next logs in). Refer to the mailx, mail, and wrife manual entries in
Section 1 for explanations of how each of these commands is used.

When you log in, a message-of-the-day may greet you before the first prompt.

Review Version: Post-8.0 -9- 9

Introduction Introduction

10

HP-UX FILE SYSTEMS

HP-UX supports two basic file systems, depending on which series you are using. A third file system is
described for historical purposes.

HFS High-performance File System. This file system format is implemented on all current HP 9000
HP-UX systems.

SDF Structured Directory Format. This file system format is implemented on all Series 500
releases. Use the SDF utilities such as sdfcp(1), sdfinit(1), sdfrm(1), sdffind(1), etc. to access
SDF files from other systems.

BFS Bell File System. This obsolete file system was implemented on the Integral PC and Series
200 systems prior to HP-UX Release 5.0. BFS files are no longer supported on HP-UX systems
(starting at Release 7.0).

File system formats are transparent to most users, and are of little importance in most applications. Most
of the time, formats only prevent direct reading of disks of a particular format on a machine that supports a
different format. Thus, SDF cannot be read on an HFS system without using SDF utilities. However, an
SDF-based system can readily transfer files to an HFS-based system over UUCP, LAN, or other supported
data communication facilities.

When transportable data is needed, a tape cartridge, flexible disk, or optical read/write disk can be used.
Flexible disks can be readily formatted and read or written in LIF (Logical Interchange Format) by using
the lifinit, lifep, lifls, lifrename, and lifrm commands in Section 1. LIF media is readily usable on other
non-HP-UX systems that support the HP LIF format.

-10- Review Version: Post-8.0

Introduction Introduction

IMPORTANT NOTES ABOUT HP-UX
RELEASES 9.0

This edition of the HP-UX Reference documents HP-UX Release 9.0 on HP 9000 Series 300, 400, 700, and 800
systems. However, there are some important differences in versions of the HP-UX operating system
corresponding to each series as noted below:

Series 300/400 Series 300 and 400 systems are architecturally very similar. Except for the very few
isolated cases where indicated otherwise, they are functionally identical.

Series 800 HP 9000 Series 800 computers use a PA-RISC CPU architecture with an I/O architec-
ture that is better suited to the needs of large multi-user systems. In addition, some
Series 800 models can be equipped with multiple, parallel processors for higher sys-
tem speeds.

Series 700 HP 9000 Series 700 computers use a PA-RISC CPU architecture that is similar to the
processors used on Series 800 systems, but Series 700 I/O architecture resembles that
of Series 300/400 systems. Therefore, there are important differences in certain
aspects of system behavior as documented under DEPENDENCIES in applicable
manual entries.

Release 9.0 contains numerous improvements and enhancements, many of which are invisible to ordinary
users, other than in overall system performance. Many new features such as dynamic buffer cache, logical
volume management, software disk striping, compiler optimizations, and memory-mapped files provide
significant performance increases in addition to the improvements in raw hardware performance of new
computer models over earlier machines.

Online help facilities and other features have been added at 9.0 to improve overall system usability.

For more information, consult the release notes files contained in directory /etc/newconfig on your
system.

Review Version: Post-8.0 -11- 11

Introduction Introduction

Notes

12 —-12- Review Version: Post-8.0

Section 1:
User Commands

intro(1) intro(1)

NAME
intro - introduction to command utilities and application programs

DESCRIPTION
This section describes commands accessible by users, as opposed to system calls in Section (2) or library
routines in Section (3), which are accessible by user programs.

Command Syntax
Unless otherwise noted, commands described in this section accept options and other arguments according
to the following syntax:

name | option (s)1 lemd_arg(s)]
where the elements are defined as follows:
name Name of an executable file.
option One or more options can appear on a command line. Each takes one of the following forms:

-no_arg_letter
A single letter representing an option without an argument.

-no_arg letters
Two or more single-letter options combined into a single command-line argu-
ment.

-arg_letter<>opt_arg
A single-letter option followed by a required argument where:

arg_letter
is the single letter representing an option that requires an argu-
ment,

opt_arg
is an argument (character string) satisfying the preceding arg_letter,

<> represents optional white space.

cmd_arg Path name (or other command argument) not beginning with -, or - by itself indicating
the standard input. If two or more cmd_args appear, they must be separated by white
space.

RETURN STATUS
Upon termination, each command returns two bytes of status, one supplied by the system giving the cause
for termination, and (in the case of “normal” termination) one supplied by the program (for descriptions, see
wait(2) and exit(2)). The system-supplied byte is O for normal termination. The byte provided by the pro-
gram is customarily 0 for successful execution and non-zero to indicate errors or failure such as incorrect
parameters in the command line, or bad or inaccessible data. Values returned are usually called variously
“exit code”, “exit status”, “return code”, or “return value”, and are described only where special conventions
are involved.

WARNINGS
Some commands produce unexpected results when processing files containing null characters. These com-
mands often treat text input lines as strings, and therefore become confused when they encounter a null
character (the string terminator) within a line.

SEE ALSO
getopt(1), exit(2), wait(2), getopt(8C), hier(5).

The introduction to this manual.

HP-UX Release 9.0: August 1992 -1- 13

adb(1) adb(1)

NAME

adb - absolute debugger

SYNOPSIS

adb [-w][-Idir][objfil [corfil 1]

DESCRIPTION

14

adb is a general-purpose debugging program that is sensitive to the underlying architecture of the proces-
sor on which it runs. It can be used to examine files and provide a controlled environment for executing
HP-UX programs.

objfil is normally an executable program file, preferably containing a symbol table; if not, the symbolic
features of adb cannot be used, although the file can still be examined. The default for objfil is a.out.
corfil is assumed to be a core image file produced after executing objfil. The default for corfil is core.

Requests to adb are read from standard input and adb responds on standard output. If the -w flagis
present, objfil is created (if necessary) and opened for reading and writing, to be modified using adb. The
~I option specifies a directory where files read with $< or $<< (see below) are sought; the default is
/usr/lib/adb. adb ignores QUIT; INTERRUPT causes return to the next adb command.

Requests to adb follow the form:
[address][, count][command]]| ;]

If address is present, dot is set to address. Initially dot is set to 0. For most commands, count specifies the
number of times the command is to be executed. The default count is 1. address and count are expressions.

‘The interpretation of an address depends on the context in which it is used. If a subprocess is being

debugged, addresses are interpreted in the address space of the subprocess. (For further details of address
mapping see Addresses below.)

Expressions

Expressions are interpreted as follows:
. The value of dot.
The value of dot increased by the current increment.
A The value of dot decreased by the current decrement.
" The last address typed.

integer A number. The prefix 0 (zero) forces interpretation in octal radix; the prefixes 0d and
0D force interpretation in decimal radix; the prefixes 0x and 0X force interpretation in
hexadecimal radix. Thus 020 = 0416 = 0x10 = sixteen. If no prefix appears, the
default radix is used; see the $d command. The radix is initialized to the base used in
the assembly language for the processor involved. Note that a hexadecimal number
whose most significant digit would otherwise be an alphabetic character must have a 0x
(or 0X) prefix.

integer . fraction
A 32-bit floating-point number.

fccee ! The ASCII value of up to 4 characters. A backslash (\) can be used to escape a single
quote ().
< name name can have the value of either a variable or a register. adb maintains a number of

variables named by single letters or digits; see Variables below. If name is a register, the
value of the register is obtained from the CORE_PROC segment in corfil (before the sub-
process is initiated) or from the user area of the subprocess. Register names are imple-
mentation dependent; see the $r command.

symbol A symbol is a sequence of uppercase or lowercase letters, underscores, or digits, not start-
ing with a digit. A backslash (\) can be used to escape other characters. The value of
the symbol is taken from the symbol table in objfil. An initial underscore () is prefixed
to symbol, if needed.

_ symbol If the compiler prefixes __ to an external symbol, it may be necessary to cite this name to
distinguish it from a symbol generated in assembly language.

-1- HP-UX Release 9.0: August 1992

adb (1) adb(1)

(exp) The value of the expression exp.

The following are monadic operators:
*oxp The contents of the location addressed by exp in corfil.
@ exp The contents of the location addressed by exp in objfil.
-exp Integer negation.
~exp Bitwise complement.

The following dyadic operators are left associative and are less binding than monadic operators:
el +e2 Integer addition.
el -e2 Integer subtraction.
el*e2 Integer multiplication.
el%e2 Integer division.
el &e2 Bitwise conjunction.
el le2 Bitwise disjunction.
el#e2 el rounded up to the next multiple of e2.

Commands

Most commands consist of an action character followed by a modifier or list of modifiers. The following
action characters can take format specifiers. (The action characters ? and / can be followed by *; see
Addresses for further details.)

?f Locations starting at address in objfil are printed according to the format f. dot is incre-
mented by the sum of the increments for each format letter. If a subprocess has been ini-
tiat;eld, address references a location in the address space of the subprocess instead of
objfil.

/f Locations starting at address in corfil are printed according to the format f and dot is
increased like ?. If a subprocess has been initiated, address refers to a location in the
address space of the subprocess instead of corfil.

=f The value of address is printed in the styles indicated by the format f. (For 1 format ?
is printed for the parts of the instruction that refer to subsequent words.)

A format consists of one or more characters that specify a style of printing. Each format character can be
preceded by an integer that indicates how many times the format is repeated. While stepping through a
format, dot is increased by the amount given for each format character. If no format is given then the last
format is used.

The following format characters are available:

o2 Print 2 bytes in octal. All octal numbers output by adb are preceded by 0.
04 Print 4 bytes in octal.

q2 Print 2 bytes in signed octal.

Q4 Print 4 bytes in signed octal.

42 Print 2 bytes in decimal.

D4 Print 4 bytes in decimal.

x 2 Print 2 bytes in hexadecimal.

X4 Print 4 bytes in hexadecimal.

u 2 Print 2 bytes as an unsigned decimal number.
U4 Print 4 bytes as an unsigned decimal number.
f£f4 Print the 32 bit value as a floating point number.

HP-UX Release 9.0: August 1992 -2 15

adb(1)

16

N o o o =
= = e 00

L . " o

new-line

adb(1)

Print double floating point.

Print the addressed byte in hexadecimal.

Print the addressed byte in octal.

Print the addressed character (the sign bit is ignored).

Print the addressed character using the following escape convention. First, the sign bit
is discarded, then character values 000 to 040 are printed as @ followed by the
corresponding character in the range 0100 to 0140. The character @ is printed as @@.

Print the addressed characters until a zero character is reached.

Print a string using the @ escape convention. The value n is the length of the string
including its zero terminator.

Print 4 bytes in date format (see ctime(3C)).

Print as machine instructions. The value of » is the number of bytes occupied by the
instruction.

Print the value of dot in symbolic form.

Print the addressed value in symbolic form. The value of » is a machine-dependent con-
stant.

When preceded by an integer, moves to the next appropriate tab stop. For example, 8t
moves to the next 8-space tab stop.

Print a space.

Print a new-line character.

Print the enclosed string.

dot is decreased by the current increment. Nothing is printed.
dot is increased by 1. Nothing is printed.

dot is decreased by 1. Nothing is printed.

Repeat the previous command with a count of 1. The value of dof continues from the end
of the previous format, unlike a [? /] command with no address, which repeats the previ-
ous address value. New-line can also be used to repeat a :8 or :c command; however,
any arguments to the previous command are lost.

[? /11 value mask

Words starting at dot are masked with mask and compared with value until a match is
found. If L is used, adb looks to match 4 bytes at a time instead of 2. If no match is
found, dot is left unchanged; otherwise dot is set to the matched location. If mask is
omitted ~1 isused.

[? /wvalue ...
Write the 2-byte value into the addressed location. If the command is W, write 4 bytes.
0Odd addresses are not allowed when writing to the subprocess address space.

=m Toggle the address mapping of corfil between the initial map set up for a valid core file
and the default mapping pair which the user can modify with /m. If the corfil was
invalid, only the default mapping is available.

[?/Imbl el f1{?/]

Record new values for (b1, el, f1). If fewer than three expressions are given, the remain-
ing map parameters are left unchanged. Ifthe ? or / is followed by *, the second seg-
ment (b2, e2, f2) of the mapping is changed. If the list is terminated by ? or /, the file
(0bjfil or corfil, respectively) is used for subsequent requests. (For example, /m? causes
/ to refer to objfil.) A /m command switches the corfil mapping to the default mapping
pair. For a valid core file, the =m command can be used to switch back to the initial
mapping.

-3- HP-UX Release 9.0: August 1992

adb (1)

>name
!

adb(1)

Assign dot to the variable or register named.
Call a shell to read the remainder of the line following 1.

The following $ commands take the form $modifier:

$<f

$<<f

$>f
Sr

$£
$b
$c

Se
Sw
$s
$o
s$d

$x
$a
Sv

Sm

$new-line

Read commands from the file f. If this command is executed in a file, further com-
mands in the file are not seen. If a count is given, and is zero, the command is
ignored. The value of the count is placed in variable 9 before the first command in f
is executed.

Similar to $< except it can be used in a file of commands without causing the file
to be closed. Variable 9 is saved when the command execuies and is restored when
it completes. Only five $<< files can be open at once.

Send output to the file f, which is created if it does not already exist.

Print the general registers and the instruction addressed by the process counter.
dot is set to the process counter contents.

Print the floating-point registers.
Print all breakpoints and their associated counts and commands.

C stack backtrace. If address is given, it is taken as the address of the current
frame (instead of the normal stack frame pointer). If count is given, only the first
count frames are printed.

The names and values of external variables are printed.

Set the page width for output to address (default 80).

Set the limit for symbol matches to address. The default is system dependent.
The default for all integers input is octal.

Set the default radix to address and report the new value. Note that address is
interpreted in the (old) current radix. Thus 10$4 never changes the default radix.
To make decimal the default radix, use 04108$d. To make decimal the default
radix, use 0t10$4d.

The default for all integers input is hexadecimal.
Exit from adb.
Print all non-zero variables in the current radix.

Print the address map. This includes both the initial and default maps for a valid
corfil with an indication of which is currently active.

print the process id and register values.

The available : commands manage subprocesses, and take the form : modifier:

:be

Set breakpoint at address. The breakpoint is executed count-1 times before caus-
ing a stop. Each time the breakpoint is encountered, the command c is executed. If
this command sets dot to zero, the breakpoint causes a stop.

Delete breakpoint at address. :d* deletes all breakpoints.

Run objfil as a subprocess. If address is given explicitly, the program is entered at
this point; otherwise the program is entered at its standard entry point. The value
count specifies how many breakpoints are ignored before stopping. Arguments to
the subprocess may be supplied on the same line as the command. An argument
starting with < or > causes the standard input or output to be established for the
command. All signals are turned on when entering the subprocess.

Set up a subprocess as in : r; no instructions are executed.

Continue the subprocess with signal s (see signal(5)). If address is given, the sub-
process continues at this address. If no signal is specified, the signal that caused
the subprocess to stop is sent. Breakpoint skipping is the same as for : r.

HP-UX Release 9.0: August 1992 -4- 17

adb(1) adb(1)

t8s As for c except that the subprocess is single stepped count times. If there is no
current subprocess, objfil is run as a subprocess as for :r. In this case no signal
can be sent; the remainder of the line is treated as arguments to the subprocess.

¢ Qs Same as :c except that a temporary breakpoint is set at the next instruction.
Useful for stepping across subroutines.

:x a [b]... Execute subroutine a with parameters (b]...

sk Terminate the current subprocess, if any.

Variables
adb provides named and numbered variables. Named variables are set initially by adb but are not used.
subsequently. Numbered variables are reserved for communication as follows:

0 The last value printed.

1 The last offset part of an instruction source.
2 The previous value of variable 1.

9 The count on the last $< command.

On entry, the following named variables are set from the coreheaders in the corfil. If corfil does not appear
to be a core file, these values are set from objfil.

b The base address of the data segment.
d The data segment size.
8 The stack segment size.
t The text segment size.
The following variables are set from objfil.
e The entry point.
m The “magic” number as defined in <magic.h>.
Addresses

The file address associated with a written address is determined by a mapping described below; see $m.
Both the objfil mapping and the default corfil mapping are represented by two triples (b1, el, f1) and (b2,
e2, 12). The initial mapping for a valid corfil contains a triple for each segment (coreheader).

The file address corresponding to a written address is calculated as follows:

If

b1 < address < el, file address = address + fI-b1,
otherwise, if

b2 < address < €2, file address = address + [2-b2,

otherwise, the requested address is not valid. For a valid corfil, this pattern repeats as many times as there
are segments (coreheaders) in the corfil, rather than twice. If ? or / is followed by *, only the second tri-

ple is used, or (when using the initial mapping of a valid corfil) only segments with a CORE_STACK core-
header.

The initial setting of both mappings is suitable for normal a.out and core files. If either file is not of
the kind expected, adb sets b1 to 0, el to the maximum file size, and 11 to 0; in this way the entire file can
be examined with no address translation.
adb keeps all appropriate values as signed 32-bit integers so that it can be used on large files.
EXTERNAL INFLUENCES
International Code Set Support
Single- and multi-byte character code sets are supported.
RETURN VALUE

adb comments about inaccessible files, syntax errors, abnormal termination of commands, etc. It echoes
adb when there is no current command or format. Exit status is 0, unless the last command failed or

18 -5- HP-UX Release 9.0: August 1992

adb (1) adb(1)

returned non-zero status.

DEPENDENCIES
Shared Libraries

Setting breakpoints in shared libraries is not supported.
adb does not read the linker symbol table for shared libraries, and cannot access locations in shared
libraries by name. In a stack backtrace ($c), adb does not know the names of shared library procedures.
If this is a problem, consider using xdb(1) instead.
On PA-RISC machines, if the core file was created when the program was in a shared library function, the
$c command does not work. When a stack backtrace for the core file encounters a shared library procedure
on the stack
it aborts at that point. If this is a problem, consider using xdb(1) instead.

Series 300/400 :
The -I option is not currently supported.

The I format prints machine instructions, such as i, except that immediate constants are printed in
decimal.

The command $n is provided to set the number of significant digits for floating-point dumps to address.
The $d command sets the default for all integers input to decimal, regardless of the value of address.

The count is ignored for the $< command (i.e., variable 9 is not updated and a count of zero does not cause
the command to be ignored), and the $<< command is not supported.

The following variables are also supported:

£ If this is set to a non-zero value, any sequence of machine instructions that effectively con-
stitute a single floating-point accelerator instruction are treated as a single instruction for
machine level single-stepping and display.

r If £ is set to a non-zero value, r indicates which address register is used in floating-point
accelerator instruction sequences. A 0 corresponds to register a0, 1 to al, etc. The
default value is 2.

Series 700/800
A leading zero by itself is not recognized as a radix indicator. Use the prefixes 0o or 00 (zero-oh) to force
interpretation in octal radix. The prefixes Ot and OT are also accepted to force interpretation in decimal
radix. Thus 0020 = 0t16 = sixteen. A hexadecimal number whose most significant digit would other-
wise be an alphabetic character may begin with a leading zero instead of 0x (or 0X), if the default radix is
hexadecimal.

The $f command prints floating point registers as 32-bit single precision and $F prints these registers as
64-bit doubles.

$R prints all registers available to adb users.
The :xand :S commands are not currently supported.
The following options are also supported:

-k Allows virtual-to-physical address translation, useful for kernel debugging. In this case,
core should be an HP-UX crash dump or /dev/memn.

When adb is invoked with this option, it sets up the context of the currently running pro-
cess using space registers four through seven. A user specified address is dereferenced by
combining it with the appropriate space register, depending on the quadrant in which the
32-bit address lies. The $p command is provided to change the current context. The
address argument is the address of the process structure corresponding to the desired con-
text.

When the current radix is not (decimal) ten, the -k option allows adb to support the
notion of long pointers or addresses in the form space . offsef. Once a space is specified, all
subsequent addresses are dereferenced using that space until the user enters another long
address. If a space equal to (hexadecimal) Oxffffffff is used, adb reverts to the previous
context and uses space registers four through seven to dereference 32-bit addresses.

HP-UX Release 9.0: August 1992 -6- 19

adb (1) adb(1)

-Ppid Causes adb to adopt process pid as a “traced” process (see ptrace(2)). This option is help-
ful for debugging processes that were not originally run under the control of adb.

adb can be used to inspect relocatable object files; it reads the symbol table and sets up the appropriate
mappings for text and data. Note that relocatable object files do not necessarily contain an exact image of
the initialized data; however, if this is the case, the data mapping is not set.
AUTHOC
adb was developed by AT&T and HP.
FILES
a.out
core
/dev/mem
/dev/kmem
/dev/swap

SEE ALSO
ptrace(2), crt0(3), ctime(3C), end(3C), a.out(4), core(4), signal(s).

adb Debugger tutorial in Assembler Reference and Tools manual.

20 -7~ HP-UX Release 9.0: August 1992

adjust(1) adjust(1)

NAME
adjust - simple text formatter

SYNOPSIS
adjust [-beir]l[-mcolumn 1 {-t tabsize][files ...]

DESCRIPTION
adjust is a simple text formatter for filling, centering, left and right justifying, or right-justifying text
paragraphs, and is designed for interactive use. It reads the concatenation of input files (or standard input
if none are given) and produces on standard output a formatted version of its input, with each paragraph
formatted separately. If - is given as an input filename, adjust reads standard input at that point (use
- - as an argument to separate ~ from options.)

adjust reads text from input lines as a series of words separated by space characters, tabs, or newlines.
Text lines are grouped into paragraphs separated by blank lines. By default, text is copied directly to the
output, subject only to simple filling (see below) with a right margin of 72, and leading spaces are converted
to tabs where possible.

Options
adjust recognizes the following command-line options:

-b Do not convert leading space characters to tabs on output (output contains no tabs, even if
there were tabs in input).

-c Center text on each line. Lines are pre- and post-processed, but no filling is done.

-3 Justify text. After filling, insert spaces in each line as needed to right-justify it (except in
the last line of each paragraph) while keeping the justified left margin.

-r After filling text, adjust the indentation of each line for a smooth right margin (ragged left
margin).

~mcolumn

Set the right fill margin to the given column number, instead of 72. Text is filled, and
optionally right justified, so that no output line extends beyond this column (if possible). If
-moO is given, the current right margin of the first line of each paragraph is used for that
and all subsequent lines in the paragraph.

By default, text is centered on column 40. With -c, the -m option sets the middle column
of the centering “window”, but -m0 auto-sets the right side as before (which then deter-
mines the center of the “window”).

-ttabsize Set the tab size to other than the default (eight columns).
Only one of the ~¢, -3, and -r options is allowed in a single command line.

Details
Before doing anything else to a line of input text, adjust first handles backspaces, rubbing out preceding
characters in the usual way. Next it ignores all non-printable characters except tab. It then expands all
tabs to spaces.

For simple text filling, the first word of the first line of each paragraph is indented the same amount as in
the input line. Each word is then carried to the output followed by one space. “Words” ending in
terminal_character[quote l[closing_character] are followed by two spaces, where terminal_character is any of
., 3, 2, 0r !; quote is a single closing quote (’) character or double-quote character ("), and close is any of
), 1, or }. Here are some examples:

end. of? sentence.” sorts!" of.) words?"]
(adjust does not place two spaces after a pair of single closing quotes (*) following a terminal_character).

adjust starts a new output line whenever adding a word (other than the first one) to the current line
would exceed the right margin.

adjust understands indented first lines of paragraphs (such as this one) when filling.
The second and subsequent lines of each paragraph are indented the same amount as the second line of the
input paragraph if there is a second line, else the same as the first line.

HP.UX Release 9.0: August 1992 -1- 21

adjust(1) adjust(1)

* adjust also has a rudimentary understanding of tagged paragraphs (such as this one) when
filling. If the second line of a paragraph is indented more than the first, and the first line has a
word beginning at the same indentation as the second line, the input column position of the tag
word or words (prior to the one matching the second-line indentation) is preserved.

Tag words are passed through without change of column position, even if they extend beyond the right mar-
gin. The rest of the line is filled or right-justified from the position of the first non-tag word.

When -7 is given, adjust uses an intelligent algorithm to insert spaces in output lines where they are
most needed, until the lines extend to the right margin. First, all one-space word separators are examined.
One space is added to each separator, starting with the one having the most letters between it and the
preceding and following separators, until the modified line reaches the right margin. If all one-space
separators are increased to two spaces and more spaces must be inserted, the algorithm is repeated with
two-space separators, and so on.

Output line indentation is held to one less than the right margin. If a single word is larger than the line
size (right margin minus indentation), that word appears on a line by itself, properly indented, and extends
beyond the right margin. However, if ~r is used, such words are still right-justified, if possible.

EXTERNAL INFLUENCES

Environment Variables

LC_CTYPE determines what are valid space and printable characters.

If LC_CTYPE is not specified in the environment or is set to the empty string, the value of LANG is used
as a default for each unspecified or empty variable. If LANG is not specified or is set to the empty string, a
default of "C" (see lang(5)) is used instead of LANG. If any internationalization variable contains an invalid
setting, adjust behaves as if all internationalization variables are set to "C". See environ(5).

International Code Set Support

Single-byte character code sets are supported.

DIAGNOSTICS

adjust complains to standard error and later returns a non-zero value if any input file cannot be opened
(it skips the file). It does the same (but quits immediately) if the argument to -mor -t is out of range, or
if the program is improperly invoked.

Input lines longer than BUFSIZ are silently split (before tab expansion) or truncated (afterwards). Lines
too wide to center begin in column 1 (no leading spaces).

WARNINGS

This program is designed to be simple and fast. It does not recognize backslash to escape white space or
other characters. It does not recognize tagged paragraphs where the tag is on a line by itself. It knows that
lines end in new-line or null, and how to deal with tabs and backspaces, but it does not do anything special
with other characters such as form feed (they are simply ignored). For complex operations, standard text
processors are likely to be more appropriate.

This program could be implemented instead as a set of independent programs, fill, center, and justify (with
-r option). However, this would be much less efficient in actual use, especially given the program’s special
knowledge of tagged paragraphs and last lines of paragraphs.

EXAMPLES

22

This command is useful for filtering text while in vi(1). For example,

!}adjust
reformats the rest of the current paragraph (from the current line down), evening the lines.
The vi command:

:map AX {!}adjust -jAVAM

(where 4 denotes control characters) sets up a useful “finger macro”. Typing X (Ctrl-X) reformats the
entire current paragraph.

adjust -ml is a simple way to break text into separate words without white space, except for tagged-
paragraph tags.

-2- HP-UX Release 9.0: August 1992

adjust(1) adjust(1)

AUTHOR
adjust was developed by HP.

SEE ALSO
nroff(1).

HP-UX Release 9.0: August 1992 -3~ 23

admin (1) admin(1)

NAME

admin - create and administer SCCS files

SYNOPSIS

admin [-n][-1[name]][-x [rel]]1[-t [name]][-£flag [flag-val]] ... [-dflag [flag-val]] ...
[-alogin]] ... [-ellogin]] ... [-mmriist]] ... [-¥ [comment]][-h][-2]file ...

LLL G A1 o b L

24

admin is used to create new SCCS files and change parameters of existing ones. Arguments to admin,
which may appear in any order, consist of option arguments, beginning with -, and named files (note that
SCCS file names must begin with the characters s.). If a named file does not exist, it is created and its
parameters are initialized according to the specified option arguments. Parameters not initialized by a
option argument are assigned a default value. If a named file does exist, parameters corresponding to
specified option arguments are changed, and other parameters are left unaltered.

If a directory is named instead of file, admin acts on each file in direcfory, except that non-SCCS files (last
component of the path name does not begin with s.) and unreadable files are silently ignored. If a name
of - is given, the standard input is read, and each line of the standard input is assumed to be the name of
an SCCS file to be processed. Again, non-SCCS files and unreadable files are silently ignored.

admin option arguments apply independently to all named files, whether one file or many. In the follow-
ing discussion, each option is explained as if only one file is specified, although they affect single or multiple
files identically.

Options

admin supports the following options and command-line arguments:
-n This option indicates that a new SCCS file is to be created.

-1[name] The name of a file from which the text for a new SCCS file is to be taken. The text con-
stitutes the first delta of the file (see -r option for delta numbering scheme). If the
1 option is used but the file name is omitted, the text is obtained by reading the stan-
dard input until an end-of-file is encountered. If this option is omitted, the SCCS file
is created with an empty initial delta. Only one SCCS file can be created by an
admin command on which the 1 option is supplied. Using a single admin to create
two or more SCCS files requires that they be created empty (no -1 option). Note that
the -1 option implies the -n option.

-rrel The release into which the initial delta is inserted. This option can be used only if the
-1 option is also used. If the -r option is not used, the initial delta is inserted into
release 1. The level of the initial delta is always 1 (by default initial deltas are named
11).

-t[name] The name of a file from which descriptive text for the SCCS file is to be taken If the
-t option is used and admin is creating a new SCCS file (the -n and/or -1 options
are also used), the descriptive text file name must also be supplied. In the case of
existing SCCS files:

e A -t option without a file name causes removal of descriptive text (if any)
currently in the SCCS file, and

¢ A -t option with a file name causes text (if any) in the named file to replace
the descriptive text (if any) currently in the SCCS file.

-fflag This option specifies a flag, and, possibly, a value for the flag, to be placed in the SCCS
file. Several £ options can be supplied on a single admin command line. The allow-
able flags and their values are:

b Allows use of the -b option on a get(1) command to create branch
deltas.

cceil The highest release (i.e., "ceiling"), a number less than or equal to
9999, which can be retrieved by a gef(1) command for editing. The
default value for an unspecified c flag is 9999.

£floor The lowest release (i.e., "floor"), a number greater than 0 but less
than 9999, which may be retrieved by a ge#(1) command for editing.

-1- HP-UX Release 9.0: August 1992

admin(1)

4asip

istr

1list

glext

mmod

ttype

vipgm]

admin(1)

The default value for an unspecified £ flagis 1.

The default delta number SID to be used by a get command (see
get(1)).

Causes the No 14 keywords (cm7) message issued by get or
delta to be treated as a fatal error (see delta(1)). In the absence of
this flag, the message is only a warning. The message is issued if no
SCCS identification keywords (see get(1)) are found in the text
retrieved or stored in the SCCS file. If a value is supplied, the key-
words must exactly match the given string. However the string must
contain a keyword, and no embedded newlines.

Allows concurrent get commands for editing on the same SID of an
SCCS file. This allows multiple concurrent updates to the same ver-
sion of the SCCS file.

Only one user can perform concurrent edits. Access by multiple users
is usually accomplished by using a common login or a set-user-ID pro-
gram (see chmod (1) and exec(2)).

A list of releases to which deltas can no longer be made (get -e
against one of these “locked” releases fails). The list has the follow-
ing syntax:

list ::= range | list , range

range ::=RELEASENUMBER | a

The character a in the list is equivalent to specifying all releases for
the named SCCS file. Omitting any list is equivalent to a.

Causes delta to create a “null” delta in each of those releases
being skipped (if any) when a delta is made in a new release (such as
when making delta 5.1 after delta 2.7, release 3, and release 4 are
skipped). These null deltas serve as “anchor points” so that branch
deltas can later be created from them. The absence of this flag
causes skipped releases to be non-existent in the SCCS file, prevent-
ing branch deltas from being created from them in the future.

User-definable text substituted for all occurrences of the %Q% key-
word in SCCS file text retrieved by get.

module name of the SCCS file substituted for all occurrences of the
9%M% keyword in SCCS file text retrieved by get. If the m flag is not
specified, the value assigned is the name of the SCCS file with the
leading s. removed.

type of module in the SCCS file substituted for all occurrences of %Y%
keyword in SCCS file text retrieved by get.

Causes delta(1) to prompt for Modification Request (MR) numbers as
the reason for creating a delta. The optional value specifies the name
of an (MR) number validity checking program (see delta(1)). (If this
flag is set when creating an SCCS file, the m option must also be used
even if its value is null).

-dflag Causes removal (deletion) of the specified flag from an SCCS file. The -4 option can
be specified only when processing existing SCCS files. Several -d options can be sup-
plied on a single admin command. See the -f£ option for allowable flag names.

Llist

A list of releases to be “unlocked”. See the -f option for a descrip-
tion of the 1 flag and the syntax of a list.

-alogin A login name, or numerical HP-UX group ID, to be added to the list of users allowed to
make deltas (changes) to the SCCS file. A group ID is equivalent to specifying all login
names common to that group ID. Several a options can be used on a single admin
command line. As many logins or numerical group IDs as desired can be on the list

HP-UX Release 9.0: August 1992

-2- 25

admin(1) admin (1)

simultaneously. If the list of users is empty, anyone can add deltas. Iflogir or group
ID is preceded by a ! they are to be denied permission to make deltas.

-elogin A login name or numerical group ID to be erased from the list of users allowed to
make deltas (changes) to the SCCS file. Specifying a group ID is equivalent to specify-
ing all login names common to that group ID. Several e options can be used on a sin-
gle admin command line.

~ylcomment] The comment text is inserted into the SCCS file as a comment for the initial delta in a
manner identical to that of delfa(1). Omission of the -y option results in a default
comment line being inserted in the form:

date and time createdYY /MM /DD /HH /MM /SS by login

The -y option is valid only if the -1 and/or -n options are specified (i.e., a new
Sccs file is being created).

-m{mrlist] The list of Modification Request (MR) numbers is inserted into the SCCS file as the
reason for creating the initial delta, in a manner identical to delta(1). The v flag
must be set and the (MR) numbers are validated if the v flag has a value (the name
of an (MR) number validation program). Diagnostic messages occur if the v flag is
not set or (MR) validation fails.

-h Causes admin fo check the structure of the SCCS file (see scesfile(4)), and to compare
a newly computed checksum (the sum of all the characters in the SCCS file except
those in the first line) with the checksum that is stored in the first line of the SCCS
file. Appropriate error diagnostics are produced.

This option inhibits writing on the file, thus cancelling the effect of any other options
supplied, and is, therefore, only meaningful when processing existing files.

-z The SCCS file checksum is recomputed and stored in the first line of the SCCS file (see
-h, above).

Note that use of this option on a truly corrupted file can prevent future detection of
the corruption.

Access Control Lists (ACLs)

Do not add optional ACL entries to SCCS files. SCCS removes them, possibly causing unexpected and
undesirable access modes.

EXTERNAL INFLUENCES

Environment Variables

LC_CTYPE determines the interpretation of text as single and/or multi-byte characters.
LANG determines the language in which messages are displayed.

If LC_CTYPE is not specified in the environment or is set to the empty string, the value of LANG is used
as a default for each unspecified or empty variable If LANG is not specified or is set to the empty string, a
default of "C" (see lang(5)) is used instead of LANG. If any internationalization variable contains an invalid
setting, admin behaves as if all internationalization variables are set to "C". See environ(5).

International Code Set Support

Single- and multi-byte character code sets are supported with the exception that multi-byte file names are
not supported.

WARNINGS

Sccs files can be any length, but the number of lines in the text file itself cannot exceed 99 999 lines.

DIAGNOSTICS

Use help(1) for explanations.

FILES

26

The last component of all SCCS file names must be of the form 8 . file-name. New SCCS files are given mode
444 (see chmod(1)). Write permission in the pertinent directory is, of course, required to create a file. All
writing done by admin is to a temporary x-file, called x. file-name, (see get(1)), created with mode 444 if
the admin command is creating a new SCCS file, or with the same mode as the SCCS file if it exists. After
successful execution of admin, the SCCS file is removed (if it exists), and the x-file is renamed to the name of

-3- HP-UX Release 9.0: August 1992

admin(1) admin(1)

the SCCS file This ensures that changes are made to the SCCS file only if no errors occurred.

It is recommended that directories containing SCCS files be mode 755 and that SCCS files themselves be
mode 444. The mode of any given directory allows only the owner to modify SCCS files contained in that
directory. The mode of the SCCS files prevents any modification at all except by SCCS commands.

If it should be necessary to patch an SCCS file for any reason, the mode can be changed to 644 by the owner,
thus allowing use of v1 or any other suitable editor. Care must be taken! The edited file should always be
processed by an admin -h to check for corruption followed by an admin -z to generate a proper check-
sum. Another admin -h is recommended to ensure the SCCS file is valid.

admin also makes use of a transient lock file called 2. file-name), which is used to prevent simultaneous
updates to the SCCS file by different users. See get(1) for further information.

SEE ALSO
delta(1), ed(1), get(1), help(1), prs(1), what(1), scesfile(4), acl(5).

SCCS User’s Guide, in Programming on HP-UX.

STANDARDS CONFORMANCE
admin: SVID2, XPG2, XPG3

HP-UX Release 9.0: August 1992 -4- 27

ar(1) ar(1)

NAME

ar - maintain portable archives and libraries

SYNOPSIS

ar key [posname] afile [name] ...

DESCRIPTION

28

ar maintains groups of files combined into a single archive file. Its main use is to create and update library
files as used by the link editor (see Id(1). It can be used, however, for any similar purpose. The magic
string and file headers used by ar consist of printable ASCII characters. If an archive is composed of print-
able files, the entire archive is printable.

Individual files are inserted without conversion into the archive file. When ar creates an archive, it
creates headers in a format that is portable across all machines. See ar(4) for a detailed description of the
portahle archive format and structure. The archive symbol table (described in ar(4)) is used by the Iink edi-
tor (see Id(1)) to search repeatedly and efficiently through libraries of object files. An archive symbol table
is created and maintained by ar only when the archive contains at least one object file. The archive sym-
bol table is in a specially named file that is always the first file in the archive. This file is never mentioned
or accessible to the user. Whenever the ar(l) command is used to create or update the contents of an
archive, the symbol table is rebuilt. The s modifier described below forces the symbol table to be rebuilt.

key must be present, and consists of an optional -, followed by one operation character from the set
drgtpmx, optionally concatenated with one or more modifier characters from the set vuaibcls. afile is
the archive file. Constituent files in the archive file are specified by name arguments.

The TMPDIR environment variable can be set to specify a directory for temporary files (see tmpnam(3S)).
The 1 modifier overrides the TMPDIR variable, and TMPDIR overrides the default directory /usr/tmp

The following key operation characters are recognized:
d Delete the named files from the archive file.
r Replace the named files, or add a new file to the archive:

e If the modifier u is used with the operation character r, only those files with dates of
modification later than the archive files are replaced.

¢ If an optional positioning character from the set abi is used, the posname argument
must be present and specifies that new files are to be placed after (a) or before (b or 1)
posname. Inthe absence of a positioning character, new files are placed at the end.

¢ ar creates afile if it does not already exist.
¢ If no name is specified and:

¢ the specified archive file does not exist, ar creates an empty archive file containing
only the archive header (see ar(4)).

* the archive contains one or more files whose names match names in the current direc-
tory, each matching archive file is replaced by the corresponding local file without con-
sidering which file may be newer unless the u modifier is also specified.

q Quickly append the named files to the end of the archive file. Positioning characters are
invalid. The operation does not check to determine whether the added members are already
in the archive. This is useful only to avoid quadratic behavior when creating a large archive
piece-by-piece. ar creates afile if it does not already exist.

t Print a table of contents of the archive file. If no names are given, all files in the archive are
described. If names are given, information about only those files appears.

P Print the named files in the archive.

m Move the named files. By default, the files are moved to the end of the archive. If a position-

ing character is present, the posname argument must be present and, as in r, posname
specifies where the files are to be moved. Note that, when used with a positioning character,
the files are moved in the same order that they currently appear in the archive, not in the
order specified on the command line. See EXAMPLES.

-1- HP-UX Release 9.0: August 1992

ar(1l) ar(l)

x Extract the named files. If no names are given, all files in the archive are extracted. In nei-
ther case does X alter (i.e., delete entries from) the archive file.

The following optional modifiers are recognized:

c Create. For r and q operations, ar normally creates afile if it does not already exist. The
c modifier suppresses the message normally produced when afile is created.

£ Force. Truncate filenames to 14 characters before comparing with existing filenames in the
archive, which are already truncated to 14 characters. When used with the r operation, the
first existing file that matches the truncated filename is replaced. The £ modifier can also be
used with other operations to allow the full filenames to be specified, rather than the trun-
cated filenames.

1 Local. Place temporary files in the local current working directory rather than in the direc-
tory specified by the environment variable TMPDIR or in the default directory /usr/tmp.
Only the d, m, and r operations and the s modifier use temporary files.

8 Force the regeneration of the archive symbol table even if ar is not invoked with an opera-
tion that modifies the archive contents. This modifier is useful for restoring the archive sym-
bol table after the strip command has been used on the archive (see strip(1)).

u Update. (r operations only) Do not copy the local file to the archive unless the local file is
newer than the corresponding existing file in the archive.
v Verbose. Give a verbose file-by-file description of the making of a new archive file from the

old archive and the constituent files. When used with t, v gives a long listing of all informa-
tion about the files. When used with the 4, m, p, g, or X operations, the verbose modifier
causes ar to print each key operation character and file name associated with that opera-
tion. For the r operation, ar shows an a if it adds a new file or an r if it replaces an exist-
ing one.

A Suppress warning messages regarding optional access control list entries. ar(1) does not
archive optional access control list entries in a file’s access control list (see acl(5)). Normally,
a warning message is printed for each file having optional access control list entries.

Only the following combinations are meaningful; no other combination of modifiers with operations have
any effect on the operation:

a: v,f, 1
r: u,v,c,£,1,A,andal bl 1
a: v, C
t: v, 8
p: v,£, 8
m: v,f,1,andal bl {1
x: v,f, s
EXTERNAL INFLUENCES

Environment Variables
LC_TIME determines the format and contents of date and time strings.

If LC_TIME is not specified in the environment or is set to the empty string, the value of LANG is used as
a default for each unspecified or empty variable. If LANG is not specified or is set to the empty string, a
default of "C" (see lang(5)) is used instead of LANG. If any internationalization variable contains an invalid
setting, ar behaves as if all internationalization variables are set to "C". See environ(5).

DIAGNOSTICS
phase error onfilename
The named file was modified by another process while ar was copying it into the archive.
When this happens, ar exits and the original archive is left untouched.

ar write error: (file system error message
ar could not write to a temporary file or the final output file. If ar was trying to write the
final output file, the original archive is lost.

ar reports cannot create file.a, where file.a is an ar-format archive file, even if file.a already exists.
This message is triggered when file.a is write-protected or inaccessible.

HP-UX Release 9.0: August 1992 -2- 29

ar(1) ar(1)

EXAMPLES

Create a new file (if one does not already exist) in archive format with its constituents entered in the order
indicated:

ar r newlib.a £3 £2 f1 £f4
Replace files f2 and f3 such that the new copies follow file f1, and f3 follows f2:
ar ma f£f1 newlib.a £Z £3
ar ma £2 newlib.a f£3
ar r newlib.a f£2 f£3

The archive is then ordered:
newlib.a: f£f1 £2° £3’ f4

where the single quote marks indicate updated files. The first command says “move f2 and {3 after fl in
newlib.a”, thus creating the order:

£1 £3 f2 f4

Note that the relative order of f2 and 3 has not changed. The second command says “move f3 after {2 in
newlib.a”, creating the order:

£1 £2 £3 f4

The third command then replaces files f2 and f3. Since files £2 and f3 both already existed in the archive,
this sequence of commands could not be simply replaced by:

ar ra f£1 newlib.a £2 £3

because the previous position and relative order of f2 and f3 in the archive are preserved (no matter how
the files are specified on the command line), producing the following archive:

newlib.a: £3/ £2’ f1 f4

WARNINGS
If you are a user who has appropriate privileges, ar alters any archive file, even if it is write-protected.

If the same file is mentioned twice in an argument list, it might be put in the archive twice.

ar automatically creates an archive symbol table, a task performed in early HP-UX versions by ranlib. If
a ranlib command is executed, the following message is displayed:

ranlib: ar already did it for you, see ar(l).

Access Control Lists
Access control list descriptions in this entry apply only to standard HP-UX operating systems. If HP-UX BLS
software has been installed, access control lists are handled differently. Refer to HP-UX BLS documentation
for information about access control lists in the HP BLS environment.

FILES
/usr/tmp/ar*
temporary files
SEE ALSO

1d(1), lorder(1), strip(1), tmpnam(3S), a.out(4), ar(4), acl(5).

STANDARDS CONFORMANCE
ar: SVID2, XPG2, XPG3, POSIX.2

30 -3- HP-UX Release 9.0: August 1992

as(1) Architecture-Dependent Command as(1)

NAME
as - assembler

SYNOPSIS
as [-A][-aafile] [-oobjfile 1 [file]

REMARKS
This is a generic entry for a machine-dependent assembler. A specific entry is provided for each assembler.
Refer to manual entry as_300(1) for information about the Series 300/400 assembler or as_800(1) for infor-
mation about the Series 700/800 assembler.

DESCRIPTION
as assembles the named file, or the standard input if no file name is specified. The optional arguments -A
or -a can be used to obtain an assembly listing with offsets and instruction codes. If -A is used the listing
goes to standard output. If -a is used the listing goes to afile.

All undefined symbols in the assembly are treated as global.

The output of the assembly is left on the file objfile; if that is omitted, .s is stripped from the end of the file
name (if there) and .o is appended to it. This becomes the name of the output file. as does not invoke
14.

EXTERNAL INFLUENCES
International Code Set Support
Single- and multi-byte character code sets are supported.

FILES
/usr/tmp/* temporary files
file.o object file

SEE ALSO

adb(l), as_300(1), as_800(1), 1d(1), nm(l), nm_300(1), nm_800(1), crt0(3), a.out(4), a.out_300(4),
a.out_800(4).

DIAGNOSTICS
If the name chosen for the output file is of the form *?. [c8], the assembler issues an appropriate com-
plaint and quits. When syntactic or semantic errors occur, a single-line diagnostic is displayed on standard
error together with the line number and the name of the file where it occurred.

STANDARDS CONFORMANCE
as: SVID2, XPG2

HP-UX Release 9.0: August 1992 -1- 31

as_300(1) Series 300/400 Implementation as_300(1)
NAME

as - assembler for MC68000, MC68010, MC68020, MC68030 and MC68040
SYNOPSIS

32

as [options][file]

as20 [options][file]

DESCRIPTION
as assembles the named file (which usually has a . s suffix as inmy_prog.s). If file is not specified or if
- is given, standard input is used instead.

The assembler can be invoked as as (/bin/as)or as20 (/bin/as20).

By default as produces object code for the MC68020, MC68030 and MC68040 processors. The -d option can
be used to produce object code for use with the MC68000 and MC68010 processors.

All undefined symbols in the assembly are treated as global.

Options

as recognizes the following options:

-L

-V number

+Z

+2Z

Generate entries in the linker symbol table for local as well as global symbols. Nor-
mally, only global and undefined symbols are entered into the table. This option is
useful when using adb to debug assembly language programs (see adb(1)).

Generate entries in the linker symbol table for all global and undefined symbols, and
for all local symhols except those with . or L as the first character. This option is
useful when using tools such as prof on files generated by cc(1) or f77(1) (see
prof(1)). Linker symbol table entries are generated for user-defined local names, but
not for compiler-generated local names.

Process the input file using the md macro preprocessor before assembling it (see
m4(1)).

Cause as to generate short-displacement forms for MC68010-compatible syntaxes,
including forward references.

Cause output object code to be placed in file objfile. If -o is not specified and the
source file is read from the standard input and the object file is written to a.out. If
-0 is not specified and the source file is not the standard input, the object file is writ-
ten to a file whose name is created by removing the .s suffix (if present) from the
basename of filename file, then adding a .o suffix to the base filename. The object
.o file is placed in the current directory. To prevent improper interpretation of other
options, the name of objfile cannot begin with the character - or +. To prevent
accidental overwriting of source files, objfile cannot end with .s or .c.

Suppress warning messages (errors are not suppressed).

Generate an assembly listing with offsets, a hexadecimal dump of the generated code,
and the source text. The assembly listing goes to standard output (stdout). This
option cannot be used when input is stdin .

Generate an assembly listing in file listfile. The listing option cannot be used when
input is stdin. The name of listfile cannot end with .c or .s and cannot start with the
character - or +.

Enable span-dependent optimization. Optimization is disabled by default.

Set the a_stamp field in the a.out header to be number. The -V option over-
rides any version pseudo-op in the assembly source. By default the a_stamp
field is set to zero (see the HP Assembler Reference Manual).

Generate an object file for use in a shared library. Instructions with a 16-bit offset
are used to access globals.

Generate an object file for use in a shared library. Instructions with a 32-bit offset
are used to access globals. This option results in slower code for global variable
access than the +z option, and should only be used if necessary (14 gives an error if

-1- HP-UX Release 9.0: August 1992

as_300(1) Series 300/400 Implementation as_300(1)

+2 is insufficient — see Id(1)).
+8 Generate an object file for use in a dynamic load library.

-1 For external subroutine calls in position-independent code, generate a PC-relative
fixup rather than procedure linkage table fixup. This option is only meaningful when
used with either the +z or +2 option.

Wherever possible, the assembler should be accessed through a compilation system interface program such
as cc(1).

The MC88010 instruction set is a superset of that of the MC68000. The MC68020 and MC68030 instruction sets
are identical and are a superset of the MC68010. The MC68040 supports all non-privileged instructions of the
MC68030 (see the HP-UX Assembler Reference Manual for details).

The as assembler supports the complete MC68000, MC68010, MC68020, MC68030 and MC68040 instruction
sets. However, if you are writing code for an MC68000 or MC68010 processor, you must limit instructions and
program structures to those supported by the microprocessor. Executing an unsupported instruction on an
MC68000 or MC68010 processor causes an illegal instruction trap during program execution, but might not
produce an error during program assembly and loading. In addition, the following instructions are not fully
supported by Series 300/400 hardware, and should not be used in assembly code written for Series 300/400
HP-UX machines: tas, cas, cas2, and bkpt.

The +2, +Z, and -1 options are used to assemble code for inclusion in a shared library. However, use of
these options is not sufficient; the code must be PIC (position independent code). For details on shared
libraries and PIC refer to the manual Programming on HP-UX.

EXTERNAL INFLUENCES
International Code Set Support
Single- and multi-byte character code sets are supported.

DIAGNOSTICS
If the name chosen for the output file ends with .c or .s or starts with the character + or -, the assem-
bler issues an appropriate complaint and quits. When a syntactic or semantic error occurs, a single-line
diagnostic is produced that includes the line number and file name where the error occurred.

WARNINGS
If the -m option is used, keywords for m4 cannot be used as symbols in the input file because md cannot
determine which are assembler symbols and which are real md macros.

The displacement value for the movp instruction must be a first-pass absolute 16-bit value.

Expressions cannot have more than one forward-referenced symbol, except for the special form <symbol>-
<symbol>.

AUTHOR
as was developed by HP.

FILES
/usr/tmp/* temporary files, which can be changed by using TMPDIR (see tmpnam(3S)).

file.o object file

SEE ALSO
as_800(1) (Series 800 Implementation), adb(l), astrn(l), atime(l), atrans(l), cc(1), £f77(1), 1d(1), m4(1),
nm_300(1), nm_800(1), prof(1), crt0(3), tmpnam(3s), a.out_300(4), a.out_800(4).

HP-UX Assembler Reference Manual and ADB Tutorial for Series 300/400 Computers,
Programming on HP-UX.

HP-UX Release 9.0: August 1992 -2- 33

as_800(1) Series 700/800 Implementation as_800(1)

NAME

as - assembler (Precision Architecture)
SYNOPSIS

as [[option] ... [file] ...] ...
DESCRIPTION

as assembles the named source file file, or the standard input if file is not specified. The -1 option causes
the assembler to produce an assembly listing with offsets.

Assembler output is stored in file objfile. Ifthe -ooutfile option is not specified, the .s suffix (if present) is
stripped from the end of the source file name and .o is appended to the name to form the name of the
default object code output file.

as output is not optimized. as creates relocatable object files which must be processed by 14 before they
can be successfully executed.

cc assembles . 8 files together with /11b/pcc_prefix. s, and subsequently invokes 1d.

Options
as recognizes the following options.

~-e An unlimited number of errors will be tolerated before the assembly process is aban-
doned. By default, one hundred errors are allowed before aborting.
-£ Procedures by default will be callers of other procedures. The normal default is that pro-

cedures do not call other procedures.

-1 Listing to standard output is made of the program after assembly. This listing shows
offsets of instructions and actual values for fields.

-ooutfile Produce an output object file by the name outfile instead of using the default .o suffix.

-8 The output file will have suffix .ss and be of a format suitable for conversion to the
ROM burning programs.
-u Unwind descriptors will not be created. To avoid the need for .CALLINFO, .ENTER

and .LEAVE must not have been used.
-v xrfile Provides the name of a file to which cross reference data is written.

EXTERNAL INFLUENCES
International Code Set Support
Single- and multi-byte character code sets are supported.

DIAGNOSTICS
When syntactic or semantic errors occur, a single-line diagnostic is displayed on standard error, together
with the line number and the file name in which it occurred.

WARNINGS
as does not do macro processing.

Trailing operands (except for a pc_relative branch displacement) can be omitted, in which case they
default to zero. Trailing commas can also be omitted. Leading commas are ignored.

FILES
/1ib/pcc_prefix.s space and register definitions
/usr/include/hard_reg.h hardware register equates
/usr/include/soft_reg.h follows calling convention
/usr/include/std_space.h space and subspace declarations

/1lib/as_msgs.cat error message catalog
file.o object file
SEE ALSO

adb(1), ce(1), 1d(1), nm_800(1), nm_300(1), crt0(3).
Assembly Language Reference Manual,

Precision Architecture and Instruction Reference Manual ,

34 -1- HP-UX Release 9.0: August 1992

as_800(1) Series 700/800 Implementation as_800(1)

Procedure Calling Conventions Reference Manual .

HP-UX Release 9.0: August 1992 -2- 35

asa(l) asa(l)

NAME

asa - interpret ASA carriage control characters

SYNOPSIS

asa/|files]

DESCRIPTION

asa interprets the output of FORTRAN programs that utilize ASA carriage control characters. It processes
either the files whose names are given as arguments, or the standard input if - is specified or if no file
names or given. The first character of each line is assumed to be a control character. The following control
characters are interpeted as indicated:

(blank) Output a single new-line character before printing.

0 Output two new-line characters before printing.
1 Output a new-page character before printing.
+ Overprint previous line.

Lines beginning with other than the above characters are treated the same as lines beginning with a blank.
The first character of a line is not¢ printed. If any such lines appear, an appropriate diagnostic is sent to
standard error. This program forces the first line of each input file to start on a new page.

To view the output of FORTRAN programs which use ASA carriage control characters and have them appear
in normal form, asa can be used as a filter:

a.out | asa | 1p

The output, properly formatted and paginated, is then directed to the line printer. FORTRAN output previ-
ously sent to a file can be viewed on a user terminal screen by using:

asa file

EXTERNAL INFLUENCES

International Code Set Support

Single- and multi-byte character code sets are supported.

SEE ALSO i

efl(1), £77(2), fsplit(1), ratfor(1).

STANDARDS CONFORMANCE

36

asa: POSIX.2

-1- HP-UX Release 9.0: August 1992

astrn(1) Series 300/400 Only astrn(1)

NAME
astrn - translate assembly language

SYNOPSIS
astrn|filename]

DESCRIPTION
astrn translates an assembly language source file from previous HP-UX Series 300/400 assembly
language syntax to new Series 300/400 HP-UX assembly language syntax. If no filename is given,
input is assumed to come from standard input.

If an opeode is not recognized, @ warning message is given and the entire line is passed through unchanged.

For any syntax error detected such that translation cannot continue, astrn reports an error and transla-
tion terminates.

Lines longer than 132 characters are truncated to 132 characters.

For a line beginning with * (indicating a comment), the * is translated to a # but is preceded by a blank
to allow preprocessing by cpp (see cpp(1)).

Absolute displacements off the program counter cannot be guaranteed to translate correctly. Any line
referencing the program counter will be flagged by a warning message.

Certain capabilities supported on the old assembler are not accepted by the new assembler. These include:

¢ The alias and include pseudo-ops are not supported. An error message is given and translation
terminates.

* The new assembler restricts expressions involving forward references for which astrn makes no
check. Such references may involve only a single symbol, a symbol plus or minus an absolute
expression, or the subtraction of two symbols.

¢ The characters $, @, ?, and \177 are no longer accepted as valid identifier characters. These
are translated to 8, A, Q, and D respectively, and a warning is issued.

¢ Span-dependent branches Jecc are translated to bec . w.
¢ An identifier equated to a register name will be translated, but the assembler will report an error.

¢ Local labels are translated to a concatenation of the nearest previous ordinary label and the local
label itself. This includes changing the $toa S.

DEPENDENCIES
astrn is implemented on Series 300/400 only.

SEE ALSO
as(1), atrans(1).

HP-UX Release 9.0: August 1992 -1- 37

at(1) at(1)
NAME
at, batch - execute commands at a later time
SYNOPSIS
at [-m] [-£filename] [-qqueue | time [date | [[next | +increment]time_designation 1job ...
at -rjob_id ..
at -1[job_id ...]
batch
DESCRIPTION
at, in the first form shown above, and batch read commands from standard input to be executed at a
later time:
at Executes commands at a specified time.

38

batch Executes commands when system load level permits.

In the second and third forms, at respectively removes one or more currently scheduled jobs, or lists some
or all currently scheduled jobs.

An at_job consists of one or more executable commands exectuable by the shell. at creates a shell script
in /usr/spool/cron/atjobs, the first part of which sets up the environment to match that of the
invoking user. The second part of the script consists of the commands entered by the user. When cron

dispatches the job
Options

it execs a shell to execute the command file (script).

at recognizes the following options and command-line arguments where job is any valid HP-UX command:
-1 [job_id ...]

List all jobs currently scheduled for the invoking user. If job_ids are given, only the
specified jobs are listed.

-r job_id ...

-m

-£ filename

-qqueue

time

date

Remove the jobs with the specified job_ids that were previously scheduled by the at
command. Job_id is the job number assigned by at when the job was originally
scheduled. When removing multiple jobs, use blanks to separate job_ids.

Send mail to the invoking user after the job has run, announcing its completion. Stan-
dard output and standard error produced by the job are mailed to the user as well, unless
they were redirected elsewhere within the job.

Specify the pathname of a file to be used as the source of the job, instead of standard
input.

Submit the specified job to the queue indicated (see queuedefs(4)). Queues a, b, and d
through y can be used. at uses queue a by default. All queues require a time desig-
nation except queue b which runs as soon as system load level permits. Queue b is
reserved for use by the batch command.

Can be specified as one, two, or four digits. One- and two-digit numbers represent hours;
four digits represent hours and minutes. Alternately, fime can be specified as two
numbers separated by a colon (:), single quote (*), the letter "h" (h), a period (.), or
comma (,). If defined in langinfo(8C), special time unit characters can be used. A suffix
amor pm can be appended. Otherwise a 24-hour clock time is understood. For example,
8:15, 8’15, 8h15, 8.15, and 8,15 are read as 15 minutes after 8 in the morning.
The suffixes zulu and utc can be used to indicate Coordinated Universal Time. The
special names noon, midnight, now, and next are also recognized.

(optional) Can be specified as either a day of the week (fully spelled out or abbreviated)
or a date consisting of a day, a month, and optionally a year. The day and year fields
must be numeric, and the month can be either fully spelled out, abbreviated, or numeric.
These three fields can be in any order, and separated by punctuation marks such as /, -,
.,or ,. If defined in langinfo(3C), special date unit characters can be present. Two spe-
cial “days”, today and tomorrow, are also recognized. If no date is given, today is
assumed if the given time is greater than the current time; tomorrow is assumed if it

-1- HP-UX Release 9.0: August 1992

at(1) at(1)

is less. If the given month is less than the current month (and no year is given), next
year is assumed. If a given date is ambiguous (such as 2/5), the D_T_FMT string (if
defined in langinfo(3C)) is used to resolve the ambiguity.

next (optional) If followed by a time_designation of minutes, hours, days, weeks,

or months, or years, lets the user schedule a task to be executed when the specified

+increment time_designation has elapsed. A numerical operator, +increment, enables the user to
schedule the task several hours, days, weeks, months, or years in advance (see EXAM-
PLES). Using the argument next is equivalent to using an increment of +1. Both
plural and singular forms of time_designation are accepted.

Standard output and standard error outpui are mailed o the user unless they are redirected elsewhere.
The shell environment variables, current directory, umask (see umask(1)) and ulimit (see ulimit(2)) are
retained when the commands are executed (see proto(4)). Open file descriptors, traps, and priority are lost.

Only users whose names appear in file /usr/1lib/cron/at.allow can run at. If that file does not
exist, file /usr/lib/cron/at .deny is checked to determine if the user should be denied access to at.
If neither file exists, only root is allowed to submit a job. If only at.deny exists but is empty, global
usage is permitted. The allow/deny files consist of one user name per line.

The words today, tomorrow, noon, midnight, now, minutes, hours, days, weeks, months,
years and their singular forms are replaced by the local language equivalent (see EXTERNAL INFLUENCES
below).

at and batch write the job_id and schedule time to standard error.

batch submits a batch job. It is similar to at now, but with the following differences: batch goes into
a different queue; at now responds with error messages.

at -r removes jobs previously scheduled by at or batch. The job_id is the number returned by the at
or batch command. To get job numbers, typing at -1. Only users with appropriate privileges can
remove jobs other than their own.

EXTERNAL INFLUENCES
Environment Variables
LC_TIME determines the format and contents of date and time strings.

LANG determines the translation of the words today, tomorrow, noon, midnight, now, minutes,
hours, days, weeks, months, years, next, and their singular forms. LANG also determines the
language in which messages are displayed.

If LC_TIME is not specified in the environment or is set to the empty string, the value of LANG is used as
a default for each unspecified or empty variable. If LANG is not specified or is set to the empty string, a
default of "C" (see lang(5)) is used instead of LANG. If any internationalization variable contains an invalid
setting, at behaves as if all internationalization variables are set to "C". See IR environ(5).

International Code Set Support
Single- and multi-byte character code sets are supported.

RETURN VALUE
Exit code 0 is returned upon successful completion, otherwise 1 is returned.

DIAGNOSTICS
at complains about syntax errors and out-of-range times.

If login shell is not /bin/sh, at produces a warning message as a reminder that at jobs are executed
using /bin/sh.

EXAMPLES
The at and batch commands read from standard input the commands to be executed at a later time,
unless the ~f option is specified. sk(1) provides different ways of specifying standard input. Within your
commands, it may be useful to redirect standard output.

The following sequence can be used at a terminal to redirect output:

batch
nroff filename > outfile
<Ctrl-D>

HP-UX Release 9.0: August 1992 -2- 39

at(1)

at(1)

This sequence demonstrates redirecting standard error to a pipe and is useful in a shell procedure. Note
that the sequence of output redirection specifications is significant:

batch <<!
nroff filename 2>&1 > outfile | mall loginid
!

To perform a task at 5:00 am next Tuesday, use
at 5am tuesday next week
To perform a task at 5:00 am one week from Tuesday (that is, 2 Tuesdays in advance) use
at 5am tuesday + 2 weeks
To have a job reschedule itself, invoke at from within the shell procedure by including code similar to the
following within the sheli file:
echo "sh shellfile" | at 1900 thursday next week
The following commands show several forms recognized by at and include native language usage:

at 0815 Jan 24

at 8:15 Jan 24

at 9:30am tomorrow
at now + 1 day

at -f job 5 pm Friday

at 17:40 Tor.

at 17h46 demain
at 5:30 26. Feb.
at 12:00 26-02

WARNINGS

1988

/* in Danish */
/* in French */
/* in German */
/* in Finnish */

If the date argument begins with a number and the time argument is also numeric without suffix, the time
argument should be a four-digit number that can be correctly interpreted as hours and minutes.

Do not use both next and + increment within a single at command; only the first operator is accepted
and the trailing operator is ignored. No warning or error is produced.

If the FIFO used to communicate with cron fills up, at is suspended until cron has read sufficient mes-
sages from the FIFO to make room for the message at is trying to write. This condition can occur if at is
writing messages faster than cron can process them or if cron is not executing.

AUTHOR
at was developed by AT&T and HP.

FILES
/usr/lib/cron
/usr/lib/cron/at.allow
/usr/lib/cron/at.deny
/usr/spool/cron/atjobs
/usr/lib/cron/queuedefs
/usr/lib/cron/.proto

SEE ALSO

main cron directory
list of allowed users
list of denied users
spool area

scheduling information
prototype information

cron(1M), crontab(1), queuedefs(4), proto(4), kill(1), mail(1), nice(1), ps(1), sh(1), hpnls(5).

STANDARDS CONFORMANCE
at: SVID2, XPG2, XPG3

batch: SVID2, XPG2, XPG3

40

HP-UX Release 9.0: August 1992

atime(1) Series 300/400 Only atime(1)

NAME
atime - time an assembly language instruction sequence

SYNOPSIS
atime [options linput_file [output_file |

DESCRIPTION
at ime provides the means to time MC680X0 assembly code sequences. It takes the input_file containing a
code sequence and returns performance information to the user. This information can then be compared
against information from other code sequence analyses to determine an optimal code sequence. Output is
directed to standard output by default or if the output_file is -, or to output_file if specified.

Additional features allow specifying sets of input data and the relative probability that each of these will
occur, obtaining an execution profile of a code sequence being evaluated, automatically cross-checking
results between analyses, and conveniently logging results.

atime has three modes of operation. Performance analysis is the default mode where a code sequence is
executed many times in a loop with atime calculating and reporting the average time per iteration. In
the execution profiling mode, atime runs all or selected data sets and reports the number of times each
executable instruction is hit. The third mode is assertion listing. Asserting particular values in a code
sequence ensures that various algorithms produce identical results. This mode causes asserted values for
all or selected data sets to be listed. This output can be used as verification data for subsequent perfor-
mance analyses and execution profiles.

Options
at ime recognizes the following options and command-line arguments:
-afile Specify an assertion data file (created by a previous run with the -1 option.)
-icount Specify the minimum number of timing iterations.

~1[name] Print asserted values. name specifies a dataset in the input file. Multiple -1
options are allowed. Omitting name causes assertions for all data sets to be listed.
Output can be used to create an assertion file for subsequent atime runs.

-n Turn off code sequence listing.

-plname] Perform execution profiling and print the hit count for each timed instruction. name
specifies a dataset in the input file to analyze. If there are multiple -p options,
printed counts will be the sum for all designated data sets. Omitting name causes
profiling for all data sets.

-t "fext" Specify an output title.

Instructions
The following atime instructions can appear in the input file and have a format similar to standard
assembler instructions. However, they cannot be labelled, each must be placed on a separate line, and com-
ments cannot follow on the same line. For instructions that have a corresponding command line option, the
latter take precedence when used.

assert.{blwll} name,location

Verify a datum. The name, an alphabetic character followed by zero or more
alphanumeric or underscore characters, identifies an asserted datum across atime
executions. Any data addressing mode, such as %d0 or 4 (%a4,%d2.w) can be
used for Jocation. Executing an assert instruction during performance analysis or
execution profiling compares the asserted location with the corresponding name in an
assertion data file. Verification also occurs in the assertion listing mode if an asser-
tion file is specified, although the primary function here is to print name/value pairs.

assert “file® Specify an assertion data file created from a prior run of atime with the -1 option.
code even

code odd Change the code to even or odd word alignment.

comment fext Specify comment text for output.

dataname name,name,..name
Define the names of the data entries in dataset instructions. Names must begin

HP-UX Release 9.0: August 1992 -1- 41

atime(1) Series 300/400 Only atime(1)

with a § and are followed by one or more alphanumeric or underscore characters.

datasetname[(count)], datum, datum,...datum
Define one data set. name identifies the data set for use with the -1 or -p options
and must be an alphabetic character followed by zero or more alphanumeric or under-
score characters. An optional count indicates the relative number of times that the
data set will be used during timing. For example, a data set with a count of 10 will

Awrnnseda daoe dlamane Faun ool raTs m—— e o e ok weed nnrrmt af T 3e avanis
C 01

execute ten times for each seven times that a data set with a coun is executed.
The default count is 1. As a particular data set is under consideration, each of its
data is treated as a string for replacing its corresponding dataname name in any
assembly instruction where that name occurs.

include b“file " Include text from the given file. Nested includes are not allowed.

iterate count Specify the number of timing iterations for performance analysis. Because the actual
count used by atime must be an integer multiple of the sum of the counts in all
dataset instructions, the count specified here is taken as a minimum. If neither
this instruction nor a -1 option appears, the default count is 1000000.

ldopt options Specify options to pass to the link editor.

nolist Turn off code sequence listing.

output "file" Append output from a performance analysis to file.

stack even

stack odd Adjust the stack for even or odd word alignment.

time Designate a code section for timing beginning after this instruction and continuing up
to a verify instruction or end-of-file.

title Specify an output title.

verify Designate a section of code to be used for algorithm verification beginning after this

line and continuing up to the end-of-file. This section will usually contain one or more
assert instructions.

Input file
The input file contains assembly code source text and atime instructions and has the following four sec-
tions.

at ime initialization section - This starts at the beginning of the file and continues up to the first MC680X0
assembly instruction or a time, code, or stack instruction. It can contain assert file, comment,
dataname, dataset, include, iterate, 1dopt, nolist, output,and title.

code initialization section - The code following the atime initialization section continues up to a time
instruction and typically does the setup for the code to be timed. It can contain any valid MC680X0 assem-
bler instruction or pseudo-op or any of the following atime instructions: code even, code odd,
stack even, stack oddq, or include. It is only in this section that dataname names can be used,
and each name replacement must yield a valid MC680X0 instruction.

timed section - This section starts at the time pseudo-op and continues up to a verify instruction or
end-of-file. It can contain any valid MC680X0 assembler instruction or pseudo-op or the atime include
instruction.

verify section - This section starts at the verify instruction and continues up to the end-of-file. It can
contain any valid MC680X0 assembler instruction or pseudo-op or the atime instructions include or
assert.{blwll}.

There must be no branching between input file sections. Each must be entered by falling into it from the
previous section. Macros for m4 are not supported, nor are multiple instructions per line (see m4(1)).
Assembly code can have references to external variables or routines as long as it is guaranteed that these
will be resolved during link editing.

DIAGNOSTICS
Error messages from atime are self-explanatory. Additional error messages may be generated from the
assembler or link editor. If assembly fails, an intermediate temporary file is be retained with the error mes-
sage, indicating its name. This file contains a substantial number of comments to aid in correlating

42 -2- HP-UX Release 9.0: August 1992

atime(1) Series 300/400 Only atime(1)

assembly errors back to the actual errors in the input file.

EXAMPLES
To evaluate an algorithm to find the maximum of three integers, the input file to atime could contain the
following code sequence:

title Find the maximum of three integers
comment Developed by T. R. Crew
comment August 15, 1988

nolist
dataname $argl $arg2, $Sarg3
dataset max1(70), 10, 4, 2
dataset max2(35), 5, 11, 0
dataset max3(20), 8, 13, 21
iterate 500000
assert "assertfile"
output "logfile"
ldopt -1lm -1lc
stack even
mov.1l &$argl, %do
mov.l &$arg2,%dl
mov.l &$arg3,%d2
code even
time
cmp.l %d0,%dl
bge.b L1
exg %d0,%d1l

Ll: cmp.l %d0 ,%42
bge.b L2
exg %d0,%d2

L2:
verlfy
assert.l max,%d0

WARNINGS

at ime determines performance information empirically. Therefore valid results are obtained only if it is
run on a quiescent single-user system.

AUTHOR
at ime was developed by HP.
FILES
/bin/as assembler, as(1)
/bin/lda link editor, 1d(2)
SEE ALSO

as(1), gprof(1), 1d(1), prof(1).

HP-UX Release 9.0: August 1992 -3- 43

atrans(1) Series 800/400 Only atrans(1)

NAME

atrans - translate assembly language

SYNOPSIS

atrans [-n]|[filename]

DESCRIPTION

language syntax to Series 300/400 HP-UX assembly language syntax. If no filename is given, input is
assumed to come from standard input.

atrans translates an assembly language source file from Series 300/400 Pascal workstation assembly

If an opcode is not recognized, the entire line is passed through unchanged. For any syntax error detected
such that a line cannot be translated, atrans issues an error message.

Lines longer than 132 characters are truncated to 132 characters.
Absolute displacements off the program counter cannot be guaranteed to translate correctly. Any line
referencing the program counter will be flagged by a warning message.

The HP-UX assembler restricts expressions involving forward references for which atrans makes no
check. Such references may involve only a single symbol, a symbol plus or minus an absolute expression, or
the subtraction of two symbols.

The characters $ and @ are not accepted as valid identifier characters by the HP-UX assembler. These are
translated to S and A respectively, and a warning is issued.

Lines containing the following list of Series 300/400 Pascal workstation pseudo-ops have no parallel in
Series 300/400 HP-UX syntax and are translated as comment lines: decimal, end, llen, 1list,
lprint,nolist, noobj, nosyms, page, spc, sprint, ttl.

Lines containing mname, include, or src pseudo-ops are translated as comment lines, and a warning is
printed stating these are not supported by the Series 300/400 HP-UX assembler.

The pseudo-ops, def, refa, and refr, are translated as global.

Certain pseudo-ops require manual intervention to translate. Each line containing these pseudo-ops causes
a message to be printed stating that an error will be generated by the Series 300/400 HP-UX assembler.
These pseudo-ops are: com, Ilmode, org, rorg, rmode, smode, start.

When specifying certain addressing modes, the Pascal workstation assembler may allow operands to
appear out of order, whereas the HP-UX assembler does not. atrans does not rearrange these into proper
order.

The -n option converts groups of two or more spaces to tabs.

SEE ALSO

44

as(1), astrn(1).

-1- HP-UX Release 9.0: August 1992

awk(1) awk(1)

NAME

awk - pattern-directed scanning and processing language
SYNOPSIS

awk [-Ffs] [-v var=value][prog | -£ file ...1{file ...]
DESCRIPTION

awk scans each input file for lines that match any of a set of patterns specified literally in prog or in one or
more files specified as ~£ file. With each pattern there can be an associated action that is to be performed
when a line in a file matches the pattern. Each line is matched against the pattern portion of every
pattern-action statement, and the associated action is performed for each matched pattern. The file name
- means the standard input. Any file of the form var=value is treated as an assignment, not a filename.
An assignment is evaluated at the time it would have been opened if it were a filename, unless the -v
option is used.

An input line is made up of fields separated by white space, or by regular expression FS. The fields are
denoted $1, $2, ...; $0 refers to the entire line.

Options
awk recognizes the following options and arguments:

-F fs Specify regular expression used to separate fields. The default is to recognize space
and tab characters, and to discard leading spaces and tabs. If the -F option is used,
leading input field separators are no longer discarded.

-£ file Specify an awk program file. Up to 100 program files can be specified. The pattern-
action statements in these files are executed in the same order as the files were
specified.

~v var=value Cause var=value assignment to occur before the BEGIN action (if it exists) is exe-
cuted.

Statements

A pattern-action statement has the form:
pattern { action }

A missing { action } means print the line; a missing pattern always matches. Pattern-action statements
are separated by new-lines or semicolons.

An action is a sequence of statements. A statement can be one of the following:

1f (expression) statement [else statement]
while (expression) statement

for (expression ; expression ; expression) statement
for (var 1in array) statement

do statement while (expression)

break

continue

{ [statement ...1}

expression # commonly var=expression
print[expression-list][> expression |

printf format|[, expression-list][> expression]
return [expression |

next # skip remaining patterns on this input line.
delete array [expression] # delete an array element.
exit [expression] # exit immediately; status is expression.

Statements are terminated by semicolons, newlines or right braces. An empty expression-list stands for $0.
String constants are quoted (" *), with the usual C escapes recognized within. Expressions take on string
or numeric values as appropriate, and are built using the operators +, -, *, /, %, * (exponentiation), and
concatenation (indicated by a blank). The operators ++, - -, +=, ~=, *=, /=, %=, A=, ¥*= 5 >= < <=,
==, !=,and ?: are also available in expressions. Variables can be scalars, array elements (denoted x [i])
or fields. Variables are initialized to the null string. Array subscripts can be any string, not necessarily
numeric (this allows for a form of associative memory). Multiple subscripts such as [i,j,%k] are permit-
ted. The constituents are concatenated, separated by the value of SUBSEP.

HP-UX Release 9.0: August 1992 -1~ 45

awk(1) awk (1)

46

The print statement prints its arguments on the standard output (or on a file if >file or >>file is present
or on a pipe if | cmd is present), separated by the current output field separator, and terminated by the out-
put record separator. file and cmd can be literal names or parenthesized expressions. Identical string
values in different statements denote the same open file. The printf statement formats its expression
list according to the format (see printf(3)).

Built-In Functions

The built-in function close (expr) closes the file or pipe expr. This function returns zero if successful, oth-
erwise, it returns non-zero.

The customary functions exp, log, sqrt, sin, cos, atan2 are built in. Other built-in functions are:
length([s]) Length of its associated argument (in characters) taken as a string, or of $0 if no
argument.
rand () Random number on (0,1)
srand([expr]) Sets and returns seed for rand, and returns the seed set. If no argument is given,
the time of day is used as the seed value; otherwise, [expr] is used.
int (x) Truncates to an integer value

substr (s, m[, n])
n-character substring of s that begins at position m counted from 1. If » is omitted,
the substring is limited by the length of string s.

index(s, ¢) Position in s where the string £ occurs, or 0 if it does not.

match(s, ere) Position in s where the extended regular expression ere occurs, or 0 if it does not.
The variables RSTART and RLENGTH are set to the position and length of the
matched string.

split (s, df, f5]) . ‘
Splits the string s into array elements a [1], @ [2], ..., a [n], and returns n. The
separation is done with the regular expression fs, or with the field separator FS iffs
is not given.

sub(ere, repl[, ir])
Substitutes repl for the first occurrence of the extended regular expression ere in the
string in. If in is not given, $0 is used.

gsub ame as sub except that all occurrences of the regular expression are replaced; sub
and gsub return the number of replacements.

sprintf (fmt, expr, ...)
String resulting from formatting expr ... according to the prin#f(8S) format fmt

system(cmd) Executes cmd and returns its exit status
toupper(s) Converts the argument string s to uppercase and returns the result.
tolower(s) Converts the argument string s to lowercase and returns the result.

The built-in function getline sets $0 to the next input record from the current input file; getline <
file sets $0 to the next record from file. getline x sets variable x instead. Finally,cmd | getline
pipes the output of emd into getline; each call of getline returns the next line of output from cmd. In
all cases, getline returns 1 for a successful input, 0 for end of file, and -1 for an error.

Patterns

Patterns are arbitrary Boolean combinations (with ! || &&) of regular expressions and relational expres-
sions. awk supports Extended Regular Expressions as described in regexp(5). Isolated regular expres-
sions in a pattern apply to the entire line. Regular expressions can also occur in relational expressions,
using the operators ~ and !{~. /re/ is a constant regular expression; any string (constant or variable) can
be used as a regular expression, except in the position of an isolated regular expression in a pattern.

A pattern can consist of two patterns separated by a comma; in this case, the action is performed for all
lines from an occurrence of the first pattern though an occurrence of the second.

-2- HP.UX Release 9.0: August 1992

awk(1) awk (1)

A relational expression is one of the following:

expression matchop regular-expression
expression relop expression

expression 1n array-name
(expr,expr,...) in array-name

where a relop is any of the six relational operators in C, and a matchop is either ~ (matches) or !~ (does
not match). A conditional is an arithmetic expression, a relational expression, or a Boolean combination of
the two.

The special patterns BEGIN and END can be used to capture control before the first input line is read and
after the last. BEGINand END do not combine with other patterns.

Special Characters
The following special escape sequences are recognized by awk in both regular expressions and strings:

Escape Meaning
\a alert character
\b backspace character
\f form-feed character
\n new-line character
\r carriage-return character
\t tab character
\v vertical-tab character
\nnn 1-to 3-digit octal value nnn
\xhhh 1-to n-digit hexadecimal number

Variable Names
Variable names with special meanings are:

FS Regular expression used to separate fields; also settable by option -Ffs.

NF Number of fields in the current record

NR Ordinal number of the current record

FNR Ordinal number of the current record in the current file

FILENAME Name of the current input file

RS Input record separator (default newline)

OFS Output field separator (default blank)

ORS Output record separator (default newline)

OFMT Output format for numbers (default %.6g). If the value of OFMT is not a
floating-point format specification, the results are unspecified.

CONVFMT Internal conversion format for numbers (default % . 6g). If the value of CONVFMT
is not a floating-point format specification, the results are unspecified.

SUBSEP Separates multiple subscripts (default 034)

ARGC Argument count, assignable

ARGV Argument array, assignable; non-null members are taken as filenames

ENVIRON Array of environment variables; subscripts are names. For example, if environ-

ment variable V=thing, ENVIRON["V"] produces thing.
Functions can be defined (at the position of a pattern-action statement) as follows:
function foo(a, b, ¢) { ...; return x }

Parameters are passed by value if scalar, and by reference if array name. Functions can be called recur-
sively. Parameters are local to the function; all other variables are global.

Note that if pattern-action statements are used in an HP-UX command line as an argument to the awk
command, the pattern-action statement must be enclosed in single quotes to protect it from the shell. For

HP.UX Release 9.0: August 1992 -3- 47

awk(1) awk(1)

example, to print lines longer than 72 characters, the pattern-action statement as used in a script (- £ file
command form) is:

length > 72
The same pattern action statement used as an argument to the awk command is quoted in this manner:
awk ’‘length > 72’

EXTERNAL INFLUENCES
Environment Variables
LC_COLLATE determines the collating sequence used when evaluating regular expressions and by the
relational operators when performing comparisons on string values.

LC_CTYPE determines the interpretation of text as single and/or multi-byte characters, and the characters
matched by character-class expressions in regular expressions.

If LC_COLLATE or LC_CTYPE is not specified in the environment or is set to the empty string, the value
of LANG is used as a default for each unspecified or empty variable. If LANG is not specified or is set to
the empty string, a default of "C" (see lang(5)) is used instead of LANG. If any internationalization variable
contains an invalid setting, awk behaves as if all internationalization variables are set to "C". See
environ(5).

The LC_NUMERIC category determines the radix character used to print floating-point numbers.

LANG defines the search path when looking for commands executed by system(expr).

International Code Set Support
Single- and multi-byte character code sets are supported except that variable names must contain only
ASCII characters and regular expressions must contain only single-byte characters.

DIAGNOSTICS
awk supports up to 199 fields ($1, $2, ..., $199) per record.

EXAMPLES
Print lines longer than 72 characters:

length > 72
Print first two fields in opposite order:
{ print $2, $1)}
Same, with input fields separated by comma and/or blanks and tabs:

BEGIN { FS = ", [\tI*|{ \t]l+" }
{ print $2, $1)

Add up first column, print sum and average:

{8 += $1 }"
END { print "sum is", s, " average is", s/NR }

Print all lines between start/stop pairs:
/start/, /stop/
Simulate echo command (see echo(1)):

BEGIN { # Simulate echo(l)
for (1 = 1; 1 < ARGC; i++) printf "%s ", ARGV[i]
printf "\n"
exit }

SEE ALSO
lex(1), sed(1)

A.V. Aho, B. W. Kernighan, P. J. Weinberger: The AWK Programming Language, Addison-Wesley, 1988.

BUGS

There are no explicit conversions between numbers and strings. To force an expression to be treated as a
number add 0 to it; to force it to be treated as a string, concatenate to it.

48 -4- HP-UX Release 9.0: August 1992

awk(1) awk(1)

Scope rules for variables in functions are not well defined.

AUTHOR
awk was developed by AT&T.

STANDARDS CONFORMANCE
awk: SVID2, XPG2, XPG3, POSIX.2

HP-UX Release 9.0: August 1992 -5~ 49

banner(1) ' banner(1)

NAME
banner - make posters in large letters

SYNOPSIS
banner strings

DESCRIPTION
banner prints its arguments (each up to 10 characters long) in large letters on the standard ocutput.

Each argument is printed on a separate line. Note that multiple-word arguments must be enclosed in
quotes in order to be printed on the same line.

EXAMPLES
Print the message “Good luck Susan” in large letters on the screen:

banner “Good luck® Susan
The words Good 1luck are displayed on one line, and Susan is displayed on a second line.

SEE ALSO
echo(1).

STANDARDS CONFORMANCE
banner: SVID2, XPG2, XPG3

50 -1- HP-UX Release 9.0: August 1992

basename(1) basename (1)

NAME
basename, dirname - extract portions of path names

SYNOPSIS
basename string [suffix]
dirname [string]

DESCRIPTION
basename deletes any prefix ending in / and the suffix (if present in string) from string, and prints the
result on the standard output. If string consists entirely of slash characters, string is set to a single slash
characier. If there are any trailing slash characters in string, they are removed. If the suffix operand is
present but not identijcal to the characters remaining in string, but it is identical to a suffix of the charac-
ters remaining in string, the suffix is removed from string. basename is normally used inside command
substitution marks (...~) within shell procedures.

"dirname delivers all but the last level of the path name in string. If string does not contain a directory
component, dlrname returns ., indicating the current working directory.

EXTERNAL INFLUENCES
Environment Variables
LC_CTYPE determines the interpretation of string and, in the case of basename, suffix as single and/or
multi-byte characters.

If LC_CTYPE is not specified in the environment or is set to the empty string, the value of LANG is used
as a default for each unspecified or empty variable. If LANG is not specified or is set to the empty string, a
default of "C" (see lang(5)) is used instead of LANG. If any internationalization variable contains an invalid
setting, basename and dirname behave as if all internationalization variables are set to "C". See
environ(5).

International Code Set Support
Single- and multi-byte character code sets are supported.

EXAMPLES
The following shell script, invoked with the argument /usr/src/cmd/cat.c, compiles the named file
and moves the output to a file named cat in the current directory:

cec $1
mv a.out ’‘basename $§1 .c’

The following example sets the shell variable NAME to /usr/src/cmd:
NAME="dirname /usr/src/cmd/cat.c’

RETURNS
basename and dirname return one of the following values:

0 Successful completion.
1 Incorrect number of command-line arguments.

SEE ALSO
expr(1), sh(1).

STANDARDS CONFORMANCE
basename: SVID2, XPG2, XPG3, POSIX.2

dirname: SVID2, XPG2, XPG3, POSIX.2

HP-UX Release 9.0: August 1992 -1- 51

be(1) be(1)

NAME

be - arbitrary-precision arithmetic language
SYNOPSIS

be [-cl[-1][file ...}
DESCRIPTION

be is an interactive processor for a language that resembles C but provides unlimited-precision arithmetic.
It takes input from any files given, then reads the standard input.

Options:
be recognizes the following command-line options:

-c Compile only. be is actually a preprocessor for dc which bc invokes automatically (see
dc(1)). Specifying -c prevents invoking de, and sends the de input to standard output.

-1 causes an arbitrary-precision math library to be predefined. As a side effect, the scale fac-
tor is set.

Program Syntax:
L asingle letter in the range a through z;
E expression;
S statement;
R relational expression.

Comments:
Comments are enclosedin /* and */.

Names:
Names include:

simple variables: L

array elements: L[E]

The words 1base, obase, and scale
stacks: L

Other Operands
Other operands include:

Arbitrarily long numbers with optional sign and decimal point.
(E)

sqrt (E)

length (E) number of significant decimal digits
scale (E) . number of digits right of decimal point
L(E,..,E)

Strings of ASCII characters enclosed in quotes (").

Arithmetic Operators:
Arithmetic operators yield an E as a result and include:

+ - % [/ % A (% is remainder (not mod, see below); 4 is power).
++ == (prefix and append; apply to names)
= += - * / = %= Az
Relational Operators
Relational operators yield an R when used as E op E:
== <= >= I= < >
Statements
E
{8;..;8}
if(R)S

52 -1- HP-UX Release 9.0: August 1992

be(1) be(1)

while (R) S

for(E;R;E)S

null statement

break

quit

Function Definitions:

define L(L,...,L){
auto L, ..., L
S;...S
return (E)

}

Functions in -1 Math Library:
Functions in the -1 math library include:

s(x) sine

c(x) cosine

() exponential

(x) log

a(x) arctangent

j@,x) Bessel function
All function arguments are passed by value. Trigonometric angles are in radians where 2 pi radians = 360
degrees.

The value of a statement that is an expression is printed unless the main operator is an assignment. No
operators are defined for strings, but the string is printed if it appears in a context where an expression
result would be printed. Either semicolons or new-lines can separate statements. Assignment to scale
influences the number of digits to be retained on arithmetic operations in the manner of dc(1). Assign-
ments to ibase or obase set the input and output number radix respectively, again as defined by dc(1).

The same letter can be used simultaneously as an array, a function, and a simple variable. All variables
are global to the program. “Auto” variables are pushed down during function calls. When using arrays as
function arguments or defining them as automatic variables, empty square brackets must follow the array
name.

The % operator yields the remainder at the current scale, not the integer modulus. Thus, at scale 1, 7 %
3 is .1 (one tenth), not 1. This is because (at scale 1) 7 / 3 is 2.3 with .1 as the remainder.

EXAMPLES
Define a function to compute an approximate value of the exponential function:

scale = 20
define e(x){
auto a, b, ¢, 1, s

a =
b=1
s =1
for(i=1; 1==1; 1i++){
a = a*x
b = b*i
¢ = a/b
1f(c == 0) return(s)
8 = 8+C
}

}
Print approximate values of the exponential function of the first ten integers.
for(i=1; 1<=10; 1++) e(l)

WARNINGS
There are currently no && (AND)or || (OR) comparisons.

HP-UX Release 9.0: August 1992 -2- 53

be(1) be(1)

The for statement must have all three expressions.
quit is interpreted when read, not when executed.

be’s parser is not robust in the face of input errors. Some simple expression such as 2+2 helps get it back
into phase.

The assignment operators: =+ =- =% =/ =% and =4 are obsolete. Any occurances of these
operators cause a syntax error with the exception of =- which is interpreted as = followed by a unary
minus.

Neither entire arrays nor functions can be passed as function parameters.

FILES
/usr/bin/dc desk calculator executable program
/usr/1lib/1ib.b mathematical library

SEE ALSO
bs(1), de(1).

be tutorial in Number Processing Users Guide

STANDARDS CONFORMANCE

54

be: POSIX.2

-3~ HP-UX Release 9.0: August 1992

bdiff (1) bdiff (1)

NAME
bdiff - diff for large files

SYNOPSIS
bALfE filel file2[n][-8]

DESCRIPTION
bAlff compares two files and produces output identical to what would be produced by A1££ (see diff (1)),
specifying changes that must be made to make the files identical. bdiff is designed for handling files
that are too large for d1£ £, but it can be used on files of any length.
bdiff processes files as follows:
¢ Ignore lines common to the beginning of both files.

¢ Split the remainder of each file into n-line segments, then execute A1£f on corresponding seg-
ments. The default value of n is 3500.

Command-Line Arguments
baiff recognizes the following command-line arguments:

filel Names of two files to be compared by bd1££. If filel or file2 (but not both) is -, standard
file2 input is used instead.
n If a numeric value is present as the third argument, the files are divided into n-line seg-

ments before processing by Ai££. Default value for » is 3500. This option is useful
when 3500-line segments are too large for processing by A1 ££.

-8 Silent option suppresses diagnostic printing by bdi££, but does not suppress possible
error messages from A1££). If the » and -s arguments are both used, the » argument
must precede the -s option on the command line or it will not be properly recognized.

EXTERNAL INFLUENCES
International Code Set Support
Single- and multi-byte character code sets are supported.
DIAGNOSTICS
both files standard input (bd2)
Standard input was specified for both files. Only one file can be specified as standard input.
non-numeric limit (bd4)
A non-numeric value was specified for the n (third) argument.
EXAMPLES
Find differences between two large files: filel and £ile2, and place the result in a new file named
diffs_1.2.

bdiff fllel file2 >diffs_1.2

Do the same, but limit file length to 1400 lines; suppress error messages:
bdiff filel file2 1400 -s >diffs_1.2

WARNINGS
bdiff produces output identical to output from d1f£, and makes the necessary line-number corrections
so that the output looks like it was processed by d1££. However, depending on where the files are split,
bdif£f may or may not find a fully minimized set of file differences.

FILES
/tmp/bd???72?

SEE ALSO
diff(1).

HP-UX Release 9.0: August 1992 -1- 56

bfs(1) bfs(1)

NAME

bfs - big file scanner

SYNOPSIS

bfs [-]name

DESCRIPTION

56

bfs is similar to ed except that it is read-only (see ed(1)) bfsa can handle files with up to 32K — 1 lines;
each line can contain up to 512 characters, including the new-line character. bfs is usually more efficient
than ed for scanning a file, since the file is not copied to a buffer. Historically, this command was most
useful for identifying sections of a large file where csplit could be used to divide it into more manage-
able pieces for editing (see csplit(1)). However, most editors now support files larger than the above-
mentioned limits.

Normally, the size of the file being scanned is printed, as is the size of any file written with the w com-
mand. The optional - suppresses printing of sizes. Input is prompted with * if P and a carriage-return
are typed, as in ed. Prompting can be turned off again by inputting another P and pressing Return. Note
that messages are given in response to errors if prompting is turned on.

bfs supports the Basic Regular Expression (RE) syntax (see regexp(5)) with the addition that a null RE
(e.g., //) is equivalent to the last RE encountered. All address expressions described under ed are sup-
ported. In addition, regular expressions can be surrounded with two symbols besides / and ?: > indi-
cates downward search without wrap-around, and < indicates upward search without wrap-around. There
is a slight difference in mark names: only the letters a through 2z can be used, and all 26 marks are
remembered.

Thee,g,v,k,n,p,q W, =, ! and null commands operate as described under ed. Commands such as -~
-, +++-, +++=, -12, and +4p are accepted. Note that 1,10p and 1,10 both print the first ten lines.
The £ command only prints the name of the file being scanned; there is no remembered file name. The w
command is independent of output diversion, truncation, or crunching (see the xo, xt, and xc commands,
below). The following additional commands are available:

x£ file Further commands are taken from the named file. When an end-of-file is reached, an inter-
rupt signal is received or an error occurs, reading resumes with the file containing the xf.
X£f commands may be nested to a depth of 10.

xo [file] Further output from the p and null commands is diverted to the named file, which, if
necessary, is created mode 666. If file is missing, output is diverted to the standard output.
Note that each diversion causes truncation or creation of the file.

+ label This positions a label in a command file. label is terminated by a new-line, and blanks
between the : and the start of label are ignored. This command can also be used to insert
comments into a command file, since labels need not be referenced.

(+, +)xb/regular expression /label
A jump (either upward or downward) is made to label if the command succeeds. It fails
under any of the following conditions:

1. Either address is not between 1 and $.

2. The second address is less than the first.

3. The regular expression does not match at least one line in the specified range,
including the first and last lines.

On success, . is set to the line matched and a jump is made to label. This command is the
only one that does not issue an error message on bad addresses. Thus it can be used to test
whether addresses are bad before other commands are executed. Note that the command

xb /label
is an unconditional jump.

The xb command is allowed only if it is read from someplace other than a terminal. Ifit is
read from a pipe only a downward jump is possible.

xn List the marks currently in use (marks are set by the k command).

-1- HP-UX Release 9.0: August 1992

bfs(1) bfs(1)

xt number Output from the p and null commands is truncated to at most number characters. The ini-
tial number is 255.

xv(digit][spaces][value]
The variable name is the specified digit following the xv. xv5100 or xv5 100 both
assign the value 100 to the variable 5. Xvé61, 100p assigns the value 1,100p to the
variable 6. To reference a variable, put a % in front of the variable name. For example,
using the above assignments for variables 5 and 6:

1,%5p
1,%5
%6

all print the first 100 lines.

g/%5/p

globally searches for the characters 100 and prints each line containing a match. To
escape the special meaning of %, a \ must precede it. For example, to match and list lines
in a program file that contain printef () format strings specifying characters, decimal
integers, or strings, the following could be used:

g/".*\%[cds] /D

Another feature of the xv command is that the first line of output from an HP-UX com-
mand can be stored into a variable. The only requirement is that the first character of
value be an !. For example:

.w junk
xv5icat junk
frm junk

tfecho “%5"
xvé6lexpr %6 + 1

each put the current line into variable 5, print it, and increment the variable 6 by one. To
escape the special meaning of ! as the first character of value, precede it with a \.

xv7\!date
stores the value !date into variable 7.

xbz label

xbn label These two commands test the last saved return code from the execution of an HP-UX system
command (!command) for a zero or non-zero value, respectively, and cause a branch to the
specified label. The two examples below both search for the next five lines containing the
string size.

First example:

xv55

s 1

/8lze/

xv5lexpr %5 - 1
1if [%5 != 0]
xbn 1

Second Example:

xv4d5

: 1

/slze/

xvdlexpr %4 - 1
11f [%4 = 0]
xbz 1

xc [switch] If switch is 1, output from the p and null commands is crunched; if switch is 0 it isn’t.
Without an argument, xc reverses switch. Initially switch is set for no crunching.
Crunched output has strings of tabs and blanks reduced to one blank, and blank lines

HP-UX Release 9.0: August 1992 -2- 87

bfs(1) bfs(1)

suppressed.

EXTERNAL INFLUENCES
Environment Variables
LC_COLLATE determines the collating sequence used in evaluating regular expressions.

LC_CTYPE determines the classification of characters as letters, and the characters matched by character
class expressions in regular expressions.

If LC_COLLATE or LC_CTYPE is not specified in the environment or is set to the empty string, the value
of LANG is used as a default for each unspecified or empty variable. If LANG is not specified or is set to
the empty string, a default of "C" (see lang(5)) is used instead of LANG. If any internationalization variable
contains an_invalid setting, bfs behaves as if all internationalization variables are set to "C". See
environ(5).

International Code Set Support
Single-byte character code sets are supported.

DIAGNOSTICS
? for errors in commands, if prompting is turned off. Self-explanatory error messages when prompting is
on.

SEE ALSO
csplit(1), ed(1), lang(5), regexp(5).

58 -3- HP-UX Release 9.0: August 1992

bifchmod (1) Series 300/400 Only bifchmod (1)

NAME
bifchmod - change mode of a BIF file

SYNOPSIS
bifchmod mode device : file ...

DESCRIPTION
bifchmod is intended to mimic chmod (1).

A BIF file name is recognized by the embedded colon (:) delimiter (see bif(4) for BIF file naming conven-
tions).

The permissions of each named file are changed according to mode, which can be absclute or symbolic. An
absolute mode is an octal number constructed from the OR of the following modes:

4000 set user ID on execution

2000 set group ID on execution

1000 sticky bit, see chmod(2)

0400 read by owner

0200 write by owner

0100 execute (search in directory) by owner
0070 read, write, execute (search) by group
0007 read, write, execute (search) by others.

A symbolic mode has the form:
[who] op permission [op permission]

who is a combination of the letters u (for user’s permissions), g (group), and o (other). Specifying a is
equivalent to ugo, which is the default if who is omitted.

op can be + to add permission to the file’s mode, - to delete permission, or = to assign permission abso-
lutely (all other bits are reset).

permission is any combination of the letters r (read), w (write), x (execute), s (set owner or group ID) and
t (save text - sticky bit); u, g, or o indicate that permission is to be taken from the current mode. Omitting
permission is only useful with = to delete all permissions.

Multiple symbolic modes separated by commas can be given. Operations are performed in the order
specified. The letter s isuseful only with u or g; t works only with u.

EXAMPLES
Deny write permission to others:

bifchmod o-w file

Make a file executable (using symbolic mode):
bifchmed +x flle

Assign read and execute permission to everybody, and set the set-user-id bit:
blfchmod 4555 file

Assign read and write permission to the file owner, and read permission to everybody else (using absolute
mode):

bifchmod 644 file

Give read, write, and execute permission to the owner and read and execute permissions to everybody else
for the BIF file /etc/script on /dev/rdsk/1s0:

bifchmod a=rx,u+w /dev/rdsk/1s0:/etc/script
or
bilfchmod 755 /dev/rdsk/1s0:/etc/script

AUTHOR
bifchmod was developed by HP.

SEE ALSO
chmod(1), chmod(2), bif(4).

HP-UX Release 9.0: August 1992 -1- 59

bifchown (1) Series 800/400 Only bifchown (1)

NAME
bifchown, bifchgrp - change file owner or group

SYNOPSIS
bifchown owner device s file ...
bifchgrp group device :file ...

DESCRIPTION
bifchown and bifchgrp are intended to mimic chown(1) and chgrp(1).

A BIF file name is recognized by the embedded colon (:) delimiter (see bif(4) for BIF file naming conven-
tions).

bifchown changes the owner of the files to owner. owner can be either a decimal user ID or a login name
found in the password file.

bifchgrp changes the group ID of the files to group. group can be either a decimal group ID or a group
name found in the group file.

EXAMPLES
The examples that follow assume that a BIF directory structure exists on the HP-UX device file
/dev/rdsk/1s0.

Set the owner of the BIF file /users/abc/phone.numto adm:
bifchown adm /dev/rdsk/1s80:/users/abc/phone.num

Set the group ID of the BIF file /tmp/b.date to the decimal number 105:
bifchgrp 105 /dev/rdsk/1s80:/tmp/b.date

AUTHOR
bifchown was developed by HP.

FILES
/etc/passwd
/etc/group

SEE ALSO
bif(4), chown(1), group(4), passwd(4).

60 -1- HP-UX Release 9.0: August 1992

bifcp (1) Series 300/400 Only bifcp (1)

NAME
bifep - copy to or from BIF files

SYNOPSIS
bilfep filel file2
bifep filel [file2 ...]directory

DESCRIPTION
bifep is intended to mimic cp(1).

A BIF file name is recognized by the embedded colon (:) delimiter (see bif(4) for BIF file naming conven-
tions).

bifecp copies a BIF or HP-UX file to a BIF or HP-UX file, or list of files (HP-UX or BIF) to a directory. The last
name on the argument list is the destination file or directory.

The file name - (dash) is interpreted to mean standard input or standard output, depending on its position
in the argument list.

RETURNS
bifcp returns exit code 0 if the file is copied successfully. Otherwise it prints a diagnostic and returns
non-zero.

EXAMPLES
Copy the HP-UX file abc to the BIF file x/y/2z on HP-UX device /dev/rdsk/1s0:

bifcp abe /dev/rdsk/1s0:x/y/z
Copy BIF file /backup/logon /dev/rdsk/1s0 to HP-UX file logcopy in the current directory:
bifcp /dev/rdsk/1s0:/backup/log logcopy
Copy BIF file archive on HP-UX device /dev/dsk/2s5 to standard output:
blfcp /dev/dsk/285:archive -
The following example copies the BIF files /a, /b, and /¢ to the HP.UX directory /users/dave:
sdfcp /dev/rdsk/2s3:/a /dev/rdsk/283:/b /dev/rdsk/283:/c /users/dave
cat(1) can be used to concatenate BIF files using bifcp in a shell script:
if [$# -1t 1 1

then
echo "Usage: bifcat file ..."
exit 1

f1i

for 1 in $*

do
bifcp $1 -

done

WARNINGS

Note that the media should not be mounted before using bifcp.
The - (standard input/output) notation does not work in some situations.

AUTHOR
bifcp was developed by HP.

SEE ALSO
bif(4), cp(D).

HP-UX Release 9.0: August 1992 -i- 61

biffind (1) Series 300/400 Only biffind (1)

NAME
biffind - find files in a BIF system

SYNOPSIS

biffind path-name-list expression
DESCRIPTION

biffind is intended to mimic £ind (see find(1)).

A BIT file name is recognized by the embedded colon () delimiter (see bif(4) for BIF file naming conven-
tions).

biffind recursively descends the directory hierarchy for each path name in the path-name-list (i.e., one or
more path names) seeking files that match a boolean expression written in the primaries given below.

-name patfern
True if pattern matches the current file name. Pattern can consist of ASCII characters
as well as the meta characters:

* match all characters.
? match any character.
[...] match a range of characters.

-perm onum True if the file permission flags exactly match the octal number onum, see chmod(1).
If onum is prefixed by a minus sign, more flag bits (017777, see staz(2)) become
significant and the flags are compared:

(flags&onum)==onum
-type ¢ True if the type of the file is ¢, where cis b, ¢, 4, p, or £ for block special file, charac-
ter special file, directory, fifo (also called a named pipe), or plain file.
-1links n True if the file has n links.

-user wname True if the file belongs to the user uname. If uname is numeric and does not appear
as a login name in the /etc/passwd file, it is taken as a user ID.

-group gname
True if the file belongs to the group gname. If gname is numeric and does not appear
in the /etc/group file, it is taken as a group ID.

-slze n True if the file is n blocks long.

-exec cmd True if the executed cmd returns a zero value as exit status. The end of cmd must be
punctuated by an escaped semicolon \;. A command argument {} is replaced by
the current path name.

-ok emd Similar to -exec except that the generated command line is printed with a question
mark first, and is executed only if the user responds by typing y.

-print Always true; causes the current path name to be printed. This option must be
included on the biffind command line anytime you want biffind to print the
path names it has found on the standard output. If -print is not specified, £ind
locates the files, but fails to tell you about them!

When -print is specified as the only expression, £ind prints the absolute path
names of all files it finds, beginning at each directory in the path-name-list. If -
print is included as the last component of an expressiorn, £ind prints the absolute
path names of only those files that satisfy the other primaries in the expression.

-inum n True if the file has inode number n.

EXAMPLES
Print the names of all files on the BIF volume /dev/rdsk/2s80:

biffind /dev/rdsk/2s0: -print
Find all filesin /dev/dsk/183: /usr/11b that are directories:

62 -1- HP-UX Release 9.0: August 1992

biffind (1) Series 300/400 Only biffind (1)

blffind /dev/dsk/183:/usr/lib -type 4 -print
Give a long listing of every directory under /users on device /dev/rdsk/2s2.
biffind /dev/rdsk/2s82:/users -type 4 -exec bifls -1 {} \;

AUTHOR
biffind was developed by HP.

FILES
/etc/passwd
/etc/group

SEE ALSO
find(1), bif(4).

HP-UX Release 9.0: August 1992 -2 - 63

bifls(1) Series 300/400 Only bifils(1)

NAME
bifls - list contents of BIF directories

SYNOPSIS
bifls [-AadFilp]][device:names ...]
bilfll [-AadFilp]|[device:names ...]

DESCRIPTION
bifils is intended to mimicIs(1).
A BIF file name is recognized by the embedded colon (:) delimiter (see bif(4) for BIF file naming conven-
‘tions).

For each directory named, bif1ls lists the contents of that directory; for each file named, bi£f1s repeats
its name and any other information requested.

For users with appropriate privileges, bifls defaults to listing all files except . (current directory) and
. . (parent directory). If the command name bifll isused, the -1 option is implied.

The following options are recognized by bif1s:

-a List all entries; in the absence of this option, entries whose names begin with a period (.) are
not listed.

-A The same as -a, except that the current directory . and parent directory .. are not listed.
For users with appropriate privileges, this flag defaults to ON, and is turned off by -A.

-d If argument is a directory, list only its name; often used with -1 to get the status of a direc-
tory.

-F List with indicator of file type: / means a directory, * means executable.

-1 List the inode of a file or files.

-1 List in long format, giving mode, number of links, owner, group, size in bytes, and time of last
modification for each file.

-p Do not use /etc/passwd and /etc/group to interpret user and group ownership, but
rather print out the numeric form.

EXAMPLES

The examples that follow assume that a BIF directory structure exists on the HP-UX device file
/dev/rdsk/1s0.

List all the files in the root directory of the BIF directory structure:
bifls ~a /dev/rdsk/1s0:
Give (in long format) all the information about the BIF directory /users/root itself (but not the files in
the directory):
bifls -1d /dev/rdsk/1s0:/users/root
WARNINGS
Remember that to obtain a listing of BIF files on /dev/rdsk/1s0, a colon is required at the end of the
device name. In other words, bifls /dev/rdsk/180 does not work; use bifls

/dev/rdsk/1s0: instead. If the colon is omitted, bifls produces a listing of the HP-UX file
/dev/rdsk/1s0, not its BIF contents.

AUTHOR
bifls was developed by HP.

FILES
/etc/passwd
user IDs
/etc/group groupIDs

SEE ALSO
bif(4), 1s(1).

64 -1- HP-UX Release 9.0: August 1992

bifmkdir(1) Series 300/400 Only bifmkdir (1)

NAME
bifmkdir - make a BIF directory

SYNOPSIS
bifmkdlir device :dirname ...

DESCRIPTION
bifmkdir is intended to mimic mkdir (see mkdir(1)).

A BIF file name is recognized by the embedded colon (:) delimiter (see bif(4) for BIF file naming conven-
tions).

bifmkdir creates specified directories in mode 777. The standard entries, . for the directory itself and
. « for its parent, are made automatically.

RETURN VALUE
bifmkdir returns exit code O if all directories were created successfully; otherwise, it prints a diagnostic
and returns non-zero. :

EXAMPLES
Create an empty subdirectory named sysmods under the directory /usr/lib on HP-UX device
/dev/dsk/2s0:

bifmkdir /dev/dsk/2s80:/usr/llb/sysmods

AUTHOR
bifmkdir was developed by HP.

SEE ALSO
bif(4), mkdir(1).

HP-UX Release 9.0: August 1992 -1- 65

bifrm (1) Series 300/400 Only bifrm (1)

NAME

bifrm, bifrmdir - remove BIF files or directories

SYNOPSIS

bifrm[-£fxri]device:file ...
bifrmdir device :dir ...

DESCRIPTION

bifrmand bifrmdilr are intended to mimic rm(1) and rmdir(1).

A BIF file name is recognized by the embedded colon (3) delimiter (see bif(4) for BIF file naming conven-
tions).

bifrm removes the entries for one or more files from a directory. If an entry was the last link to the file,
the fiie is destroyed.

If a designated file is a directory, an error comment is printed (unless the optional argument -x has been
used, see below).

Recognized options are:
~f Remove file with no questions asked, even if the file has no write permission.

-r Recursively delete the entire contents of a directory, then the directory itself. bifrm can
recursively delete up to 17 levels of directories.

-1 Causes bifrm to ask whether or not to delete each file. If -r is also specified, bl frm asks
whether to examine each directory encountered.

bifrmdir removes entries for the named directories, which must be empty.

EXAMPLES

The following examples assume that a BIF directory structure exists on the HP-UX device file
/dev/rdsk/1s0.

Recursively comb through the BIF directory /tmp and ask if each BIF file should be removed (forced, with
no file mode checks):

bifrm -irf /dev/rdsk/1s0:/tmp
Remove BIF directory /users/doug:
bifrmdir /dev/rdsk/1s0:/users/doug

AUTHOR

bifrm was developed by HP.

SEE ALSO

66

rm(1), rmdir(1), bif(4).

-1- HP-UX Release 9.0: August 1992

bs(1) bs(1)

NAME
bs - a compiler/interpreter for modest-sized programs

SYNOPSIS
bs [file[args]]

DESCRIPTION
bs is a remote descendant of BASIC and SNOBOL4 with some C language added. bs is designed for pro-
gramming tasks where program development time is as important as the resulting speed of execution. For-
malities of data declaration and file/process manipulation are minimized. Line-at-a-time debugging, the
trace and dump statements, and useful run-time error messages all simplify program testing. Further-
more, incomplete programs can be debugged; inner functions can be tested before outer functions have been
written, and vice versa.

If file is specified on the command-line, it is used for input before any input is taken from the keyboard. By
default, statements read from file are compiled for later execution. Likewise, statements entered from the
keyboard are normally executed immediately (see complle and execute below). Unless the final
operation is assignment, the result of an immediate expression statement is printed.

bs programs are made up of input lines. If the last character on a line is a \, the line is continued. bs
accepts lines of the following form:

statement
label statement

A label is a name (see below) followed by a colon. A label and a variable can have the same name.

A Dbs statement is either an expression or a keyword followed by zero or more expressions. Some keywords
(clear, compile, !, execute, include, ibase, obase, and run) are always executed as they are

compiled.
Statement Syntax:
expression The expression is executed for its side effects (value, assignment, or function call). The
details of expressions follow the description of statement types below.
break break exits from the innermost £or/while loop.
clear Clears the symbol table and compiled statements. clear is executed immediately.

compile [expression]
Succeeding statements are compiled (overrides the immediate execution default). The
optional expression is evaluated and used as a file name for further input. A clear is
associated with this latter case. compile is executed immediately.

continue continue transfers to the loop-continuation of the current for/while loop.

dump [name] The name and current value of every non-local variable is printed. Optionally, only the
named variable is reported. After an error or interrupt, the number of the last statement is
displayed. The user-function trace is displayed after an error or stop that occurred in a
function. ,

edit A call is made to the editor selected by the EDITOR environment variable if it is present,
or ed(1) if EDITOR is undefined or null. If the file argument is present on the command
line, file is passed to the editor as the file to edit (otherwise no file name is used). Upon
exiting the editor, a complle statement (and associated clear) is executed giving that
file name as its argument.

exit [expression]
Return to system level. The expression is returned as process status.

execute Change to immediate execution mode (an interrupt has a similar effect). This statement

HP-UX Release 9.0: August 1992 -1- 67

bs(1)

68

bs(1)

does not cause stored statements to execute (see run below).

for name = expression expression statement
for name = expression expression

next

for expression , expression , expression statement
for expression , expression , expression

next

The for statement repetitively executes a statement (first form) or a group of statements
(second form) under control of a named variable. The variable takes on the value of the
first expression, then is incremented by one on each loop, not to exceed the value of the
second expression. The third and fourth forms require three expressions separated by com-
mas. The first of these is the initialization, the second is the test (true to continue), and the
third is the loop-continuation action (normally an increment).

fun f([a, ...1) [v, ...]

nuf

freturn

goto name
ibase n

fun defines the function name, arguments, and local variables for a user-written function.
Up to ten arguments and local variables are allowed. Such names cannot be arrays, nor
can they be /O associated. Function definitions cannot be nested. Calling an undefined
function is permissible; see function calls below.

A way to signal the failure of a user-written function. See the interrogation operator (?)
below. If interrogation is not present, £return merely returns zero. When interrogation
is active, £return transfers to that expression (possibly by-passing intermediate function
returns).

Control is passed to the internally stored statement with the matching label.

ibase sets the input base (radix) to n. The only supported values for n are the constants
8, 10 (the default), and 16. Hexadecimal values 10-15 are entered as a-£. A leading digit
is required (i.e., £0a must be entered as 0£0a). 1base (and obase discussed below)
are executed immediately.

1£ expression statement

1f expression

[else...]
£fi

The statement (first form) or group of statements (second form) is executed if the expression
evaluates to non-zero. The strings 0 and "" (null) evaluate as zero. In the second form, an
optional else provides for a second group of statements to be executed when the first
group is not. The only statement permitted on the same line with an else is an 1f; only
other £1s can be on the same line with a £1. The concatenation of else and if into an
elif is supported. Only a single £1 is required to close an 1f ... elif .. [else ...]
sequence. .

include expression

obase n

onintr label
onintr

expression must evaluate to a file name. The file must contain bs source statements.
Such statements become part of the program being compiled. include statements can-
not be nested.

obase sets the output base ton (see ibase above).

onintr provides program control of interrupts. In the first form, control passes to the
label given, just as if a goto had been executed at the time onintr was executed. The
effect of the statement is cleared after each interrupt. In the second form, an interrupt
causes bs to terminate.

return [expression]

The expression is evaluated and the result is passed back as the value of a function call. If
no expression is given, zero is returned.

-2- HP-UX Release 9.0: August 1992

bs(1) bs(1)

run The random number generator is reset. Control is passed to the first internal statement. If
the run statement is contained in a file, it should be the last statement.

stop Execution of internal statements is stopped. bs reverts to immediate mode.

trace [expression]
The trace statement controls function tracing. If the expression is null (or evaluates to
zero), tracing is turned off. Otherwise, a record of user-function calls/returns is printed.
Each return decrementsthe trace expression value.

while expression statement
while expression

next while is similar to for except that only the conditional expression for loop-continuation
is given.

! shell command
An immediate escape to the shell.

.. This statement is ignored (treated as a comment).

Expression Syntax:
name A name is used to specify a variable. Names are composed of a letter (uppercase or lower-
case) optionally followed by letters and digits. Only the first six characters of a name are
significant. Except for names declared in furn statements, all names are global to the pro-
gram. Names can take on numeric (double float) values, string values, or can be associated
with input/output (see the built-in function opern() below).

name ([expression [, expression] ... 1)

Functions can be called by a name followed by the arguments in parentheses separated by
commas. Except for built-in functions (listed below), the name must be defined with a fun
statement. Arguments to functions are passed by value. If the function is undefined, the
call history to the call of that function is printed, and a request for a return value (as an
expression) is made. The result of that expression is taken to be the result of the undefined
function. This permits debugging programs where not all the functions are yet defined.
The value is read from the current input file.

name [expression [, expression] ...]
This syntax is used to reference either arrays or tables (see built-in fable functions below).
For arrays, each expression is truncated to an integer and used as a specifier for the name.
The resulting array reference is syntactically identical to a name; a[1, 2] is the same as
a[1] [2]. The truncated expressions are restricted to values between 0 and 32 767.

number A number is used to represent a constant value. A number is written in Fortran style, and
contains digits, an optional decimal point, and possibly a scale factor consisting of an e fol-
lowed by a possibly signed exponent.

string Character strings are delimited by " characters. The \ escape character allows the double
quote (\"), new-line (\n), carriage return (\x), backspace (\b), and tab (\t) characters to
appear in a string. Otherwise, \ stands for itself.

(expression) Parentheses are used to alter the normal order of evaluation.

(expression , expression [, expression ...]) [expression]
The bracketed expression is used as a subscript to select a comma-separated expression
from the parenthesized list. List elements are numbered from the left, starting at zero.
The expression:

(False, True)[a == b]
has the value True if the comparison is true.

? expression The interrogation operator tests for the success of the expression rather than its value. At
the moment, it is useful for testing end-of-file (see examples in the Programming Tips sec-
tion below), the result of the eval built-in function, and for checking the return from
user-written functions (see £return). An interrogation “trap” (end-of-file, etc.) causes an
immediate transfer to the most recent interrogation, possibly skipping assignment

HP-UX Release 9.0: August 1992 -3- 69

bs(1)

70

- expression
++ name
- - pame
texpression

expression

Rinary Opera

< <= >

+ -
*/%

A

bs(1)

statements or intervening function levels.

The result is the negation of the expression.

Increments the value of the variable (or array reference). The result is the new value.
Decrements the value of the variable. The result is the new value.

The logical negation of the expression. Watch out for the shell escape command.

operator expression Common functions of two arguments are abbreviated by the two argu-
ments separated by an operator denoting the function. Except for the assignment, concate-
nation, and relational operators, both operands are converted to numeric form before the
function is applied.

tors (in increasing precedence):

= is the assignment operator. The left operand must be a name or an array element. The
result is the right operand. Assignment binds right to left, all other operators bind left to
right.

_ (underscore) is the concatenation operator.

& (logical AND) has result zero if either of its arguments are zero. It has result one if both
of its arguments are non-zero; | (logical OR) has result zero if both of its arguments are
zero. It has result one if either of its arguments is non-zero. Both operators treat a null
string as a zero.
>= == I=

The relational operators (<: less than, <=: less than or equal, >: greater than, >=:
greater than or equal, ==: equal to, !=: not equal to) return one if their arguments are in
the specified relation, or return zero otherwise. Relational operators at the same level
extend as follows: as>b>c is equivalent to a>b & b>c¢. A string comparison is made if
both operands are strings.

Add and subtract.
Multiply, divide, and remainder.
Exponentiation.

Built-in Functions:

arg(i)

narg()

abs (x)
atan(x)
ceil(x)
cos(x)
exp (x)
floor(x)
log(x)
rand ()
sin(x)
sqgrt (x)

Dealing with arguments

is the value of the i-th actual parameter on the current level of function call. At level zero,
arg returns the i-th command-line argument (arg(0) returns bs).

returns the number of arguments passed. At level zero, the command argument count is
returned.

Mathematical
is the absolute value of x.
is the arctangent of x. Its value is between —1/2 and n/2.
returns the smallest integer not less than x.
is the cosine of x (radians).
is the exponential function of x.
returns the largest integer not greater than x.
is the natural logarithm of x.
is a uniformly distributed random number between zero and one.
is the sine of ¥ (radians).
is the square root of x.

String operations

-4~ HP-UX Release 9.0: August 1992

bs(1) bs(1)

slze(s) the size (length in bytes) of s is returned.

format (f, a)
returns the formatted value of @. f is assumed to be a format specification in the style of
printf(3S). Only the % ...£,% ... @, and % ... 8 types are safe. Since it is not always
possible to know whether a is a number or a string when the format call is coded, coere-
ing a to the type required by £ by either adding zero (for e or £ format) or concatenating
() the null string (for 8 format) should be considered.

index(x, y) returns the number of the first position in x that any of the characters from y matches. No
match yields zero.

trans(s, f, t)
Translates characters of the source s from matching characters in f to a character in the
same position in £. Source characters that do not appear in f are copied to the result. If the
string f is longer than ¢, source characters that match in the excess portion of f do not
appear in the result.

substr (s, start, width)
returns the sub-string of s defined by the starting position and width.

match (string, pattern)

mstring(n) The pattern is a regular expression according to the Basic Regular Expression definition
(see regexp(5)). mstring returns the n-th (1 <= n <= 10) substring of the subject that
occurred between pairs of the pattern symbols \(and \) for the most recent call to
match. To succeed, patterns must match the beginning of the string (as if all patterns
began with A). The function returns the number of characters matched. For example:

match("al23ab123", ".*\([a-z]\)") == 6

mstring(l) == "b"
File handling
open (name, file, function)
close(name)
name argument must be a bs variable name (passed as a string). For the open, the file
argument can be:
1. a 0 (zero), 1, or 2 representing standard input, output, or error output, respec-
tively;

2. a string representing a file name; or

3. a string beginning with an ! representing a command to be executed (via sh
-¢). The function argument must be either r (read), w(write), W (write without
new-line), or a (append). After a close, name reverts to being an ordinary vari-
able. If name was a pipe, a walt () is executed before the close completes (see
wait(2)). The bs exit command does not do such a wait. The initial associa-
tions are:

Open(“get", 0’ Ilrll)
open(Ilput " , 1' llwll)
open("puterr", 2, "w")

Examples are given in the following section.

access (s, m)
executes access () (see access(2)).

ftype(s) returns a single character file type indication: £ for regular file, p for FIFO (i.e., named
pipe), d for directory, b for block special, or ¢ for character special.

Tables
table(name, size)
A table in bs is an associatively accessed, single-dimension array. “Subscripts” (called
keys) are strings (numbers are converted). The name argument must be a bs variable
name (passed as a string). The size argument sets the minimum number of elements to be
allocated. bs prints an error message and stops on table overflow. The result of table is

HP-UX Release 9.0: August 1992 -5- 71

bs(1)

72

bs(1)

name.

item(name, i)

key()

iskey (name,

eval (s)

plot (request,

The item function accesses table elements sequentially (in normal use, there is no orderly
progression of key values). Where the item function accesses values, the key function
accesses the “subscript” of the previous item call. It fails (or in the absence of an
interrogate operator, returns null) if there was no valid subscript for the previous
item cail. The name argument shouid not be quoted. Since exact table sizes are not
defined, the interrogation operator should be used to detect end-of-table; for example:

table("t", 100)

If word contalns "party”, the following expression adds one
to the count of that word:
++t [word]

To print out the the key/value pairs:
for 1 = 0, ?(8 = item(t, 1)), ++1 1f key() put = key()_":"_s

If the interrogation operator is not used, the result of item is null if there are no further
elements in the table. Null is, however, a legal “subscript”.

word)
iskey tests whether the key word exists in the table name and returns one for true, zero
for false.

Odds and ends

The string argument is evaluated as a bs expression. The function is handy for converting
numeric strings to numeric internal form. eval can also be used as a crude form of
indirection, as in:

name = "xyz" eval("++"_ name)

which increments the variable xyz. In addition, eval preceded by the interrogation
operator permits the user to control bs error conditions. For example:

?eVal(llopen(\llx\ll' \llxxx\ll, \Ilr\ll) ll)

returns the value zero if there is no file named XXX (instead of halting the user’s program).
The following executes a goto to the label L (if it exists):

label="L"
if ! (?eval("goto "_ label)) puterr = "no label"

args)
If the tplot command is available, the plot function produces output on devices recog-
nized by tplot. The requests are as follows:

Call Function

plot (0, term) causes further plot output to be piped into #plot
with an argument of -Tferm. Term can be up
to 40 characters in length.

plot (1) “erases” the plotter.

plot (2, string) labels the current point with string.

plot (3, x1, y1, x2, y2) draws the line between (x1,y1) and (x2,y2).

plot (4, x,y,1r) draws a circle with center (x,y) and radius r.

plot (5, x1, y1, 22, ¥2, %3, ¥3) draws an arc (counterclockwise) with center
(x1,yI) and endpoints (x2,y2) and (x3,y3).

plot (6) is not implemented.

plot (7, x,¥) makes the current point (x,y).

-6- HP-UX Release 9.0: August 1992

bs(1) bs(1)

Plot (8, x,¥) draws a line from the current point to (x,y).

plot (9, x, y) draws a point at (x,y).

plot (10, string) sets the line mode to string.

plot (11, x1,y1,x2, y2) makes (x1,y1) the lower left corner of the plot-
ting area and (x2,y2) the upper right corner of
the plotting area.

pPlot (12, x1, y1, x2, y2) causes subsequent x (y) coordinates to be multi-

plied by x1 (yI) and then added to x2 (y2) before
they are plotted. The initial scaling is
plot(12, 1.0, 1.0, 0.0, 0.0).

Some requests do not apply to all plotters. All requests except zero and twelve are
implemented by piping characters to ¢plot.

Each statement executed from the keyboard re-invokes tplot, making the results
unpredictable if a complete picture is not done in a single operation. Plotting should thus
be done either in a function or a complete program, so all the output can be directed to
tplot in a single stream.

last () in immediate mode, last returns the most recently computed value.

EXTERNAL INFLUENCES
Environment Variables
LC_COLLATE determines the collating sequence used in evaluating regular expressions.

LC_CTYPE determines the characters matched by character class expressions in regular expressions.

If LC_COLLATE or LC_CTYPE is not specified in the environment or is set to the empty string, the value
of LANG is used as a default for each unspecified or empty variable. If LANG is not specified or is set to
the empty string, a default of "C" (see lang(5)) is used instead of LANG. If any internationalization variable
contains an invalid setting, bs behaves as if all internationalization variables are set to "C". See
environ(5).

International Code Set Support
Single-byte character code sets are supported.

EXAMPLES
Using bs as a calculator ($ is the shell prompt):

$ bs

Distance (inches) light travels in a nanosecond.
186000 * 5280 * 12 / 1le9

11.78496

LI

Compound interest (6% for 5 years on $1,000).

int = .06 / 4

bal = 1000

for 1 = 1 5%4 bal = bal + bal*int
bal - 1000

346.855007

exit

The outline of a typical bs program:

initialize things:

varl = 1

open(“"read”, “infille", "r")
compute:

while ?(str = read)

oo .

HP-UX Release 9.0: August 1992 -7- 73

bs(1)

next

clean up:

close("read")

last statement executed (exit or stop):
exit

lagt input line:

run

Input/Output examples:

Copy file oldfile to file newfile.
open("read", "oldfile", “r")
open("write", "newfile", "w")

while ?(write = read)

close "read" and "write":
close("read")

close("write")

Pipe between commands.

open(lllsll, ll!ls *II' llrll)

open(llprll' Il!pr _2 _h IListlll’ Ilwll)
while ?(pr = 18) ...

be sure to close (wait for) these:
close("1ls")

close("pr")

WARNINGS
The graphics mode (plot ..) is not particularly useful unless the tplot command is available on your
system.

bs(1)

bs is not tolerant of some errors. For example, mistyping a £un declaration is difficult to correct because a
new definition cannot be made without doing a clear. The best solution in such a case is to start by using
the edit command.

SEE ALSO

ed(1), sh(1), access(2), printf(3S), stdio(3S), lang(5), regexp(5).

See Section (3M) for a further description of the mathematical functions.

pow () is used for exponentiation — see exp (3M));
bs uses the Standard I/0 package.

74

HP-UX Release 9.0: August 1992

cal(1)

NAME
cal - print calendar

SYNOPSIS
cal [[month] year]

DESCRIPTION

cal(1)

cal prints a calendar for the specified year. If a month is also specified, a calendar just for that month is
printed. If neither is specified, a calendar for the present month is printed. year can be between 1 and
9999. month is a decimal number between 1 and 12. The calendar produced is that for England and

English colonies.

EXAMPLES
The command:

cal 9 1850

prints the calendar for September, 1850 on the screen as follows:

September 1850
s M Tu
1 2 3

8 9 10
15 16 17
22 23 24
29 30

WARNINGS

The year is always considered to start in January even though this is historically naive.

w
4
11
18
25

Th
5

12
19
26

F
6
13
20
27

s
7
14
21
28

Beware that cal 83 refers to the early Christian era, not the 20th century.

STANDARDS CONFORMANCE
cal: SVID2, XPG2, XPG3

HP-UX Release 9.0: August 1992

5

calendar(1) calendar (1)

NAME

calendar - reminder service

SYNOPSIS

calendar [~]

DESCRIPTION

=T e T mn s oeald o 4 £, P N P | PR rvasep Aldoass adone B o] b Tdam ncy nmd o

calendar consults the file calendar in the current QIreCuory anda prinvs ouv 1ines containin ing tod"y’s or

tomorrow’s date anywhere in the line. On weekends, “tomorrow” extends through Monday.

When a - command-line argument is present, calendar searches for the file calendar in each user’s
home directory, and sends any positive results to the user by mail (see mail(1)). Normally this is done
daily in the early morning hours under the control of cron (see cron(iM)). When invoked by cron,
calendar reads the first line in the calendar file to determine the user’s environment.

Language-dependent information such as spelling and date format (described below) are determined by the
user-specified LANG statement in the calendar file. This statement should be of the form
LANG=language where language is a valid language name (see lang(5)). If this line is not in the calen-
dar file, the action described in the EXTERNAL INFLUENCES Environment Variable section is taken.

calendar is concerned with two fields: month and day. A month field can be expressed in three different
formats: a string representing the name of the month (either fully spelled out or abbreviated), a numeric
month, or an asterisk (representing any month). If the month is expressed as a string representing the
name of the month, the first character can be either uppercase or lowercase; other characters must be
lowercase. The spelling of a month name should match the string returned by ca]lmg langinfo() (see
langinfo(3C)). The day field is a numeric value for the day of the month.

Month-Day Formats

If the month field is a string, it can be followed by zero or more blanks. If the month field is numeric, it
must be followed by either a slash (/) or a hyphen (~). If the month field is an asterisk (*), it must be fol-
lowed by a slash (/). The day field can be followed immediately by a blank or non-digit character.

Day-Month Formats

The day field is expressed as a numeral. What follows the day field is determined by the format of the
month. If the month field is a string, the day field must be followed by zero or one dot (.) followed by zero
or more blanks. If the month field is a numeral, the day field must be followed by either a slash (/) or a
hyphen (-). If the month field is an asterisk, the day field must be followed by a slash (/).

EXTERNAL INFLUENCES

Environment Variables

LC_TIME determines the format and contents of date and time strings when no LANG statement is
specified in the calendar file.

LANG determines the language in which messages are displayed.

If LC_TIME is not specified in the environment or is set to the empty string, the value of LANG is used as
a default for each unspecified or empty variable. If LANG is not specified or is set to the empty string, a
default of "C" (see lang(5)) is used instead of LANG. If any internationalization variable contains an invalid
setting, calendar behaves as if all internationalization variables are set to "C". See environ(5).

International Code Set Support

Single- and multi-byte character code sets are supported.

EXAMPLES

76

The following calendar file illustrates several formats recognized by calendar:

LANG=american

Friday, May 29th: group coffee meeting

meetling with Boss on June 3.

3/30/87 - quarter end review

4-26 Management council meeting at 1:00 pm

It i1s first of the month (*/1); status report due.

In the following calendar file, dates are expressed according to European English usage:

LANG=english
On 20 Jan. code review

-1- HP-UX Release 9.0: August 1992

'calendar(1) calendar(1)

Jim’s birthday is on the 3. February

30/3/87 - quarter end review

26-4 Management council meeting at 1:00 pm

It 1s first of the month (1/*); status report due.

WARNINGS
To get reminder service, either your calendar must be public information or you must run calendar from
your personal crontab file, independent of any calendar - run systemwide. Note that if you run
calendar yourself, the calendar file need not reside in your home directory.

calendar’s extended idea of “bomorrow” does not account for holidays.

AUTHOR
calendar was developed by AT&T and HP.

FILES
calendar
/tmp/cal*
/usr/lib/calprog to figure out today’s and tomorrow’s dates
/usr/lib/crontab
/etc/passwd

SEE ALSO
cron(1M), langinfo(3C), mail(1), environ(5).

STANDARDS CONFORMANCE
calendar: SVID2, XPG2, XPG3

HP-UX Release 9.0: August 1992 -2- (ki

cat(1)

NAME

cat - concatenate, copy, and print files
SYNOPSIS

cat [-sul[-v[-t]l[-ellfile ..
DESCRIPTION

cat(1)

cat reads each file in sequence and writes it on the standard output. Thus:

cat file
prints file on the default standard output device;
cat filel file2 >file3

concatenates filel and file2, and places the result in file3.

If - is appears as a file argument, cat uses standard input. To combine standard input and other files,

use a mixture of - and file arguments.
Options

cat recognizes the following options:

-8 Silent option. cat suppresses error messages about non-existent files, identical input and out-
put, and write errors. Normally, input and output files cannot have identical names unless the

file is a special file.

-u Do not buffer output (handle character-by-character). Normally, output is buffered.

-v Cause non-printing characters (with the exception of tabs, new-lines and form-feeds) to be
printed visibly. Control characters are printed using the form AX (Ctrl-X), and the DEL charac-
ter (octal 0177) is printed as 4?. All other non-printing characters are printed as M-x, where x
is the character specified by the seven low order bits. This option is influenced by the LANG

environment variable and its corresponding code set.

When the -v option is used, the following options are also available:

-e Print a $ character at the end of each line (prior to the new-line).
with the -e option or -e is ignored.

-t Print each tab character as AI.

ignored.

EXTERNAL INFLUENCES
Environment Variables

~-v must be used

-v must be used with the -t option or -t is

LC_CTYPE determines the interpretation of text and filenames as single and/or multi-byte characters.

LANG determines the language in which messages are displayed.

If LC_CTYPE is not specified in the environment or is set to the empty string, the value of LANG is used
as a default for each unspecified or empty variable. If LANG is not specified or is set to the empty string, a
default of "C" (see lang(5)) is used instead of LANG. If any internationalization variable contains an invalid
setting, cat behaves as if all internationalization variables are set to "C". See environ(5).

International Code Set Support

Single- and multi-byte character code sets are supported.

RETURN VALUE
Exit values are:

0 Successful completion.
>0 Error condition occurred.

EXAMPLES
To create a zero-length file, use any of the following:

cat /dev/null >file
cp /dev/null file
touch file

78 -1~

HP-UX Release 9.0: August 1992

cat(1) cat(1)

SEE ALSO
cp(1), pg(1), pr(1), rmnl(1), ssp(1).

WARNINGS
Command formats such as

overwrites the data in filel before the concatenation begins, thus destroying the file. Therefore, be careful
when using shell special characters.

STANDARDS CONFORMANCE
cat: SVID2, XPG2, XPG3, POSIX.2

HP-UX Release 9.0: August 1992 -2- 79

cb(1) ‘ cb(1)

NAME

cb - C program beautifier, formatter
SYNOPSIS

cb[-8]1[-31[-1 length]ifile ..]
DESCRIPTION

cob reads ¢ programs cither from files or from the standard innut, and writes them on the standard sutsut

o) ndar vrite o ard cutpu
b reads C ams, either from files or from the sta d input, and writes them on the stand put
with spacing and indentation that displays the structure of the code. Under default options, c¢b preserves
all user new-lines.

Options
cb recognizes the following options:

-8 Converts the code to the cancnical style of Kernighan and Ritchie in The C Programmin,
Language.

-3 Causes split lines to be put back together.

-1 length

Causes cb to split lines that are longer than length. If the position indicated by length
is in the middle of an identifier, an operator, a comment, or a string literal, cb keeps the
entire token on the same line.

EXTERNAL INFLUENCES
Environment Variables
LC_CTYPE determines the interpretation of comments and string literals as single and/or multi-byte char-
acters.

I LC_CTYPE is not specified in the environment or is set to the empty string, the value of LANG is used
as a default for each unspecified or empty variable. If LANG is not specified or is set to the empty string, a
default of "C" (see lang(5)) is used instead of LANG. If any internationalization variable contains an invalid
setting cb behaves as if all internationalization variables are set to "C". See environ (5).

International Code Set Support
Single- and multi-byte character code sets are supported.

SEE ALSO
ce(D).
The C Programming Language by B. W. Kernighan and D. M. Ritchie.

WARNINGS

Hidden punctuation in preprocessor statements causes indentation errors. An example of hidden punctua-
tion is the curly brace used in a macro definition :

#define DO_FOREVER while (1) {
#idefine END FOREVER }

80 -1- HP-UX Release 9.0: August 1992

cc(l) cc(1)

NAME
cc, ¢89 - C compiler

SYNOPSIS
cc [options] files
c89 [options] files

DESCRIPTION
cc is the HP-UX C compiler. ¢89 is the HP-UX POSIX-conformant C compiler. Both accept several types of
arguments as files:

¢ Arguments whose names end with .¢ are understood to be T source files. Each is compiled and
the resulting object file is left in a file having the corresponding basename, but suffixed with .o
instead of .c. However, if a single C file is compiled and linked, all in one step, the .o file is
deleted.

¢ Similarly, arguments whose names end with .s are understood to be assembly source files and
are assembled, producing a .o file for each .s file.

¢ Arguments whose names end with .1 are assumed to be the output of cpp (see the -P option
below). They are compiled without again invoking cpp (see cpp(1)). Each object file is left in a
file having the corresponding basename, but suffixed .o instead of . 1.

* Arguments of the form -1x cause the linker to search the library 11bx.sl or 1ibx.a in an
attempt to resolve currently unresolved external references. Because a library is searched when
its name is encountered, placement of a -1 is significant. If a file contains an unresolved external
reference, the library containing the definition must be placed affer the file on the command line.
See 1d(1) for further details.

¢ All other arguments, such as those whose names end with .o or .a, are taken to be relocatable
object files that are to be included in the link operation.

Arguments and options can be passed to the compiler through the cCOPTS environment variable as well as
on the command line. The compiler reads the value of ccopTs and divides these options into two sets;
those options which appear before a vertical bar (1), and those options which appear after the vertical bar.
The first set of options are placed before any of the command-line parameters to cc; the second set of
options are placed after the command-line parameters to cc. If the vertical bar is not present, all options
are placed before the command-line parameters. For example (in sh(1) notation),

CCOPTS="~-v | -lmalloc"
export CCOPTS
cc -g prog.c

is equivalent to
¢ec -v ~g prog.c -lmalloc
When set, the TMPDIR environment variable specifies a directory to be used by the compiler for temporary
files, overriding the default directories /tmp and /usr/tmp.
Options
Note that in the following list, the cc and <89 options -A , -6 , -g , -0 , =P , -V , =¥ ,

+z , and +Z are not supported by the C compiler provided as part of the standard HP-UX operating sys-
tem. They are supported by the C compiler sold as an optional separate product.

The following option is recognized only by cc:

-Amode Specify the compilation standard to be used by the compiler. mode can be one of the follow-
ing letters:

¢ Compile in a mode compatible with HP-UX releases prior to 7.0. (See The C Pro-
gramming Language, First Edition by Kernighan and Ritchie). This option is
currently the default. The default may change in future releases.

a Compile under ANSI mode (ANSI programming language C standard ANS X3.159-
1989). When compiling under ANSI mode, header files define only those names
specified by the standard. To get the same name space as in compatibility mode
(-Ac), define the symbol HPUX_SOURCE.

HP-UX Release 9.0: August 1992 -1- 81

cc(l)

82

cc(1)

The following options are recognized by both ¢c and ¢89:

-C

~-C
-Dname=def
-Dname

-BE

-g

-G
-Idir

~1x
~-Ldir
-n

-N

-ooutfile
-0
-p

~tx, name

Suppress the link edit phase of the compilation, and force an object (. o) file to be produced
for each .c file even if only one program is compiled. Object files produced from C pro-
grams must be linked before being executed.

Prevent the preprocessor from stripping C-style comments (see ¢pp(1) for details).

Define name to the preprocessor, as if by *#define’. See c¢pp(1) for details.

Run only cpp on the named C or assembly files, and send the result to the standard out-
put.

Cause the compiler to generate additional information needed by the symbolic debugger.
This option is incompatibie with optimization.
Prepare object files for profiling with gprof (see gprof(1)).

Change the algorithm used by the preprocessor for finding include files to also search in
directory dir. See cpp(1) for details.

Refer to the fourth bullet item at the beginning of the DESCRIPTION section.

Change the algorithm used by the linker to search for 1ibx.sl or 1ibx.a. The -L
option causes cc to search in dir before searching in the default locations. See Id(1) for
details.

Cause the output file from the linker to be marked as shareable. For details and system
defaults, see Id(1).

Cause the output file from the linker to be marked as unshareable. For details and system
defaults, see Id(1).

Name the output file from the linker outfile. The default name is a.out.
Invoke the optimizer with level 2 optimization. Equivalent to +02.

Arrange for the compiler to produce code that counts the number of times each routine is
called. Also, if link editing takes place, replace the standard startoff routine by one that
automatically calls monitor () at the start (see monifor(3C)) and arranges to write out a
mon.out file at normal termination of execution of the object program. prof can then
be used to generate an execution profile (see prof(1)).

Run only cpp on the named C files and leave the result on corresponding files suffixed . 1.
The -P option is also passed along to cpp.

Cause the output file from the linker to be marked as demand loadable. For details and
system defaults, see Id(1).

Cause the output file from the linker to be marked as not demand loadable. For details and
system defaults, see ld(1).

Cause the output of the linker to be stripped of symbol table information. See strip(1) for
more details. The use of this option prevents the use of a symbolic debugger on the result-
ing program. See ld(1) for more details.

Compile the named C files, and leave the assembly language output on corresponding files
suffixed . 8.

Substitute subprocess x with name where x is one or more of a set of identifiers indicating
the subprocess(es). This option works in two modes: 1) if x is a single identifier, name
represents the full path name of the new subprocess; 2) if x is a set of identifiers, name
represents a prefix to which the standard suffixes are concatenated to construct the full
path names of the new subprocesses.

The x can take one or more of the values:
P Preprocessor (standard suffix is ¢cpp)

-2- HP-UX Release 9.0: August 1992

ce(1)

-Uname

-V

-w

cc(l)

Compiler (standard suffix is ccom)
Same as ¢

Assembler (standard suffix is as)
Linker (standard suffix is 1d)

Remove any initial definition of name in the preprocessor. See cpp(1) for details.

Hfoq

Enable verbose mode, which produces a step-by-step description of the compilation process
on the standard error.

Suppress warning messages.

-Wx, argll,arg2...]

4

-2

+Z,+Z

Pass the argument[s] argi to subprocess x, where x can assume one of the values listed
under the -t option as well as d (driver program). The -W option specification allows
additional, implementation-specific options to be recognized by the compiler driver. For
example,

-W1l, -a,archive

causes the linker to link with archive libraries instead of with shared libraries. See Ild(1)
for details. For some options, a shorthand notation for this mechanism can be used by plac-
ing + in front of the option name as in

+M
which is equivalent to
-We, -M

+M is the Series 300/400 option that causes the compiler to generate calls to the math
library instead of generating code for the MC68881 or MC68882 math coprocessor. Options
that can be abbreviated using + are implementation dependent, and are listed under
DEPENDENCIES.

Generate additional information needed by static analysis tools, and ensure that the pro-
gram is linked as required for static analysis. This option is incompatible with optimiza-
tion.

Enable support of 16-bit characters inside string literals and comments. Note that 8-bit
parsing is always supported. See hpnls(5) for more details on International Support.

Do not bind anything to address zero. This option allows runtime detection of null pointers.
See the note on pointers below.

Allow dereferencing of null pointers. See the note on poinfers below. The -z and -Z are
linker options. See Id(1) for more details.

Both of these options cause the compiler to generate position independent code (PIC) for use
in building shared libraries. The -G and -p options are ignored if +z or +Z is used.
Normally, +2z should be used to generate PIC; however, when certain limits are exceeded,
+Z is required to generate PIC. The 14 linker issues the error indicating when +%2 is
required. If both +z and +Z are specified, only the last one encountered applies. For a
mo;}ap coljn;gxlebe discussion regarding PIC and these options, see the manual Programming
on HP-UX.

Any other options encountered generate a warning to standard error.

Other arguments are assumed to be C-compatible object programs, typically produced by an earlier cc
run, or perhaps libraries of C-compatible routines. These programs, together with the results of any compi-
lations specified, are linked (in the order given) to produce an executable program with the name a.out.

The first edition of The C Programming Language by Kernighan and Ritchie and the various addenda to it
are intentionally ambiguous in some areas. HP-UX specifies some of these below for compatibility mode (-

HP-UX Release 9.0: August 1992 . -8 - 83

ce(l) cc(l)

Ac) compilations.
char The char type is treated as signed by default. It can be declared unsigned.

pointers Accessing the object of a NULL (zero) pointer is technically illegal (see Kernighan and
Ritchie), but many systems have permitted it in the past. The following is provided to max-
imize portability of code. If the hardware is able to return zero for reads of location zero
(when accessing at least 8- and 16-bit guantities), it must do so unless the -z flag is
present. The -z flag requests that SIGSEGV be generated if an access to location zero is
attempted. Writes of location zero may be detected as errors even if reads are not. If the
hardware cannot assure that location zero acts as if it was initialized to zero or is locked at
zero, the hardware should act as if the -z flag is always set.

identifiers Identifiers are significant up to 255 characters.

types Certain programs require that a type be a specific number of bits wide. It can be assumed
that an int can hold at least as much information as a short, and that a long can
hold at least as much information as an int. Additionally, either an int or a long can
hold a pointer.

EXTERNAL INFLUENCES
Environment Variables
When the -Y option is invoked, LC_CTYPE determines the interpretation of string literals and comments
as single and/or multi-byte characters.

LANG determines the language in which messages are displayed.

If LC_CTYPE is not specified in the environment or is set to the empty string, the value of LANG is used
as a default for each unspecified or empty variable. If LANG is not specified or is set to the empty string, a
default of "C" (see lang(5)) is used instead of LANG. If any internationalization variable contains an
invalid setting, cc behaves as if all internationalization variables are set to "C". See environ(5).

International Code Set Support
Single- and multi-byte character code sets are supported.

DIAGNOSTICS
The diagnostics produced by C itself are intended to be self-explanatory. Occasionally, messages may be
produced by the preprocessor, assembler or the link editor.

If any errors occur before cc is completed, a non-zero value is returned. Otherwise, zero is returned.

EXAMPLES
The following compiles the C file prog.c to create a prog.o file, then invokes the 1d link editor to link
prog.o and procedure.o with all the C startup routines in /1ib/crt0.o and library routines from
the Clibrary 1ibc.sl or 1ibc.a. The resulting executable program is placed in file prog:

¢¢ prog.c procedure.o -o prog

WARNINGS
Options not recognized by cc are not passed on to the link editor. The option -W 1, arg can be used to
pass any such option to the link editor.

By default, the return value from a C program is completely random. The only two guaranteed ways to
return a specific value are to explicitly call exit () (see exit(2)) or leave the function main() with a
return expression; construct.

DEPENDENCIES
Series 300/400
Note that in the following list, the cc and ¢89 options +e, +0, +y are not supported by the C compiler
provided as part of the standard HP-UX operating system. They are supported by the C compiler sold as an
optional separate product.

The -z option is not supported.
The default is to allow null pointer dereferencing; hence using -Z has no effect.

The compiler supports the following additional options. The +opfI notation can be used as a shorthand
notation for some -W options.

84 -4- HP-UX Release 9.0: August 1992

ce(l) ce(l)

+bfpa Cause the compiler to generate code that uses the HP98248A or HP98248B floating
point accelerator card, if it is installed at run time. If the card is not installed,
floating point operations are done on the MC68881 or MC68882 math coprocessor or
the MC68040.

+eor -Wc,-We Enables HP value added features when compiling in ANSI C mode, -Aa. This
option is ignored with -Ac since these features are already provided. Features
enabled:

¢ $ as an identifier character
¢ Accept embedded assembly code

+ffpa Cause the compiler to generate code for the HP98248A or HP98248B floating point
accelerator card. This code does not run unless the card is installed.

+M Cause the compiler not to generate in-line floating point code for the MC68881,
MC68882, or MC68040. Library routines are referenced for matherr () capability.

+Nsecondary N Adjust the initial size of internal compiler tables. secorndary is one of the letters
from the set (abdepstw}, and N is an integer value. secondary and N are not
optional. The Series 300/400 compiler automatically expands the tables if they
become full. The +N option is supported only for backwards compatibility.

+0opt Invoke optimizations selected by opt. If opt is 1, only level 1 optimizations are
handled. If opt is 2, all optimizations except in-lining are performed. The -0
option is equivalent to +02. Ifopt is V, optimization level 2 is selected, but all glo-
bal variables and objects dereferenced by global pointers are treated as if they
were declared with the keyword volatile, meaning that references to the object
cannot be optimized away. If opt is 3, all level 2 optimizations are performed and
in addition, code for certain functions is generated in-line rather than calling the
function. Functions that are in-lined are strcpy(), the transcendental func-
tions available on the MC68881 or MC68882 math coprocessor, and certain user-
defined functions. For a complete discussion of the various optimization levels, see
the C Programmers Guide.

+8 By default, compilation subprocesses are run concurrently and, in ANSI mode,
cpp and ccom (cpassl) are merged into a single subprocess. This results in
better compile time performance except when available compilation memory is
scarce. Invoking this option executes the processes sequentially and executes
cpp and ccom (cpassl) as distinct processes, thereby minimizing memory con-
sumption.

-tx, name Specify additional subprocess identifiers.

0 First pass of the compiler with level 2 optimization. It is not the same
as subprocess ¢ (standard suffix is cpassl or cpassl.ansli if
compiling with -Aa) :

1 Second pass of the compiler with level 2 optimization (standard suffix is
cpass2)

¢ Compiler (standard suffix is ccomor ccom.ansi if compiling with
-Aa)

g Level 2 global optimizer (standard suffix is c.c1)

2 Peephole optimizer (standard suffix is ¢.c2)

i Procedure integrator (standard suffix is ¢.c0)

-v Enables verbose mode in the global optimizer as well.

-Wc,-F Perform some function in-lining. The functions that are ’in-lined’ are strepy (),
and the transcendental functions available on the MC68881 or MC68882 math
COpProcessor.

-W c,-YE Cause source code lines to be printed on the assembly (. 8) file as assembly com-

ments, thus showing the correspondence between C source and the resulting
assembly code. This option is incompatible with optimization.

HP-UX Release 9.0: August 1992 -5- 85

ce(l) : ce(1)

86

-W g,-All Cause the global optimizer to apply all optimizations. By default, the global
optimizer does not attempt certain optimizations when the complexity of a func-
tion exceeds a certain limit. This option causes the global optimizer to uncondi-
tionally apply all optimizations.

+y The default behavior for generating symbolic debugging information (-g) and
static analysis information (-y) is to generate such information only for items
referenced in the file being compiled. For example, if a structure is defined in
some included header file yet never referenced, no symbolic debugging information
or static analysis information is generated for that structure. The +y option
causes the compiler to generate symbolic debugging information or static analysis
information for all items, whether referenced or not. The +y option is only valid
when used with -gor -y.

Series 700/800

Note that in the following list of Series 700-and-800-specific cc and c¢89 options, ~Ae, +df, +e, +£, +ES,
+I, -J, +m, +0, +P, +pgm, and +y are not supported by the C compiler provided as part of the standard
HP-UX operating system. They are supported by the C compiler sold as an optional separate product.

The default is to allow null pointer dereferencing, hence using -2 has no effect.

The -g option is incompatible with optimization. If both debug and optimization are specified, only the
first option encountered takes effect.

The -y option is incompatible with optimization. If both static analysis and optimization are specified,
only the first option encountered takes effect.

The -s option is incompatible with the -g, ~G, -p, and -y options. If -8 is specified along with any of
the above options, the -s option is ignored, regardless of the order in which the options were specified.

Nonsharable, executable files generated with the -N option cannot be executed via exec () (see exec(2)).
For details and system defaults, see Id(1).

The compiler supports the following additional options. The +optI notation can be used as a shorthand
notation for some -W c options.

-W4d, -a When processing files which have been written in assembly language, does not
assemble with the prefix file which sets up the space and subspace structure
required by the linker. Files assembled with this option cannot be linked unless
they contain the equivalent information.

-Ae Extended ANSI mode. Same as -D_HPUX_SOURCE and -Aa and allows the fol-
lowing extensions: $ characters can appear in identifier names, and enum
declarations can include integral type specifiers. Additional extensions may be
added to this option in the future.

+DAarchitecture Generate code for the architecture specified. architecture is required. The default
code generated for the Series 800 is PA_RIsc_1.0. The default code generated
for the Series 700 is PA_RISc_1.1. The default code generation can be overrid-
den using the CCOPTS environment variable or the command line option +DA.
architecture can be either a model number (e.g., 750 for the HP 9000/750 or 870
for the HP 9000/870) or one of the following generic specifications:

1.0 Precision Architecture RISC, version 1.0 or higher. This is the default
for all Series 800 models.

1.1 Precision Architecture RISC, version 1.1. This is the default for all
Series 700 models.

The compiler determines the target architecture using the following precedence:

1. Command line specification of +DA.
2. Specification of +DA in the CCOPTS environment variable.
3. The default as mentioned above.

+D8Sarchitecture Use the instruction scheduler tuned to the architecture specified. architecture is
required. If this option is not used, the compiler uses the instruction scheduler for
the architecture on which the program is compiled. The architecture is

-6- HP-UX Release 9.0: August 1992

cc(l)

+dfname

+e

+ESlit

+ESsfc

+£

+FPstring

+I

-J

+L

+Lp

cc(l)

determined by uname () (see uname(2)). architecture can be either a model
number (e.g, 750 for the HP 9000/750 or 870 for the HP 9000/870) or one of the
following generic specifications:

1.0 Precision Architecture RISC, version 1.0.
1.1 Precision Architecture RISC, version 1.1, general scheduling for
Series 700 systems.

Specify profile database file name for profile based optimizations. The default is
flow.data if name is not specified. No white space is permitted between +df
and name. Data for more that one application can be kept in the same file. +df
requires the specification of either +I or +P. See ld(1), +P, +I, and +pgm for
more details.

Enables HP value-added features while compiling in ANSI C mode, -Aa. This
option is ignored with -Ac because these features are already provided. Features
enabled:

¢ Long pointers

¢ Integral type specifiers can appear in enum declarations.
¢ The § character can appear in identifier names.

¢ Missing parameters on intrinsic calls

Place string literals and const-qualified data into read-only memory. This may
save space in the resulting executable by coalescing identical string literals, and
can promote data sharing in a multi-user application.

Replace millicode calls with in-line code when performing function pointer com-
parisons. Care should be taken when using this option and pointers to shared
library routines are being compared.

Inhibit the automatic promotion of float to double when evaluating expressions.
This differs from +r (see below) in that parameters and function return values
are promoted. This option is ignored and a warning is produced if ANSI mode is in
effect.

Specifies how the run time behavior for floating-point operations should be initial-
ized at program start-up. The default is that all behaviors are disabled. See ld(1)
for specific values of string. To dynamically change these settings at run time,
refer to fpgetround(3M).

Instrument the application for profile based optimization. See Id(1), +P, +df, and
+pgm for more details. This option is incompatible with -G, -g, +m, +o, -p,
-S, and -y.

Improve run-time performance of standard C routines by altering error condition
checking. This option generates in-line assembly for the routines strepy (),
sqgrt (), and £abs (), under certain conditions. The matherr () function is
not called nor is errno set on error conditions for the above-mentioned routines
(see matherr(3M)). This option may also alter the error handling of many routines
declared in <math.h>. -J may in-line or alter the error handling of additional
routines in future releases.

Enable the listing facility and any listing pragmas. A straight listing prints:

¢ A header on the top of each page

¢ Line numbers

¢ The nesting level of each statement

¢ The postprocessed source file with expanded macros, included files, and
no user comments (unless the -C option is used).

If the -Aa option is used to compile under ANSI C, the listing shows the original
source file rather than the postprocessed source file.

Print a listing as described above, but show the postprocessed source file even if
one of the ANSI compilation levels is selected. This option is ineffective if the -y

HP-UX Release 9.0: August 1992 -7- 87

cc(l) ce(l)

option is used.

+m Cause the identifier maps to be printed. First, locals by function are listed, then
all global identifiers are listed. All other identifiers are then listed by function at
the end of the listing. For struct and union members, the address column contains
B@b, where B is the byte offset and b is the bit offset. Both B and b are in hexade-
cimal. This option is incompatible with +I and +P.

+0 Cause the code offsets to be printed in hexadecimal; they are grouped by function
at the end of the listing. This option is incompatible with +I and +P.
+0opt Invoke optimizations selected by opt. Defined values for opt are:
0 Perform no optimizations. This is the default.
1 Perform optimizations within bagic blocks only.
2 Performlevel 1 and global optimizations. Same as -0.
3 Perform level 2 as well as interprocedural global optimizations. Also

sends -0 to the linker (see Id(1)).

Same as -O but notify the optimizer that floating point traps have

been enabled. Prevents the optimizer from performing loop-invariant

code motion on floating point operations.

ml Same as -0 and allow the optimizer to assume no parameters in func-
tion calls refer to the same memory.

8 Same as -0 but notify the optimizer to suppress any optimizations
which might result in a significant code-size expansion.

V Same as -0 but assume all global memory references are to be treated
as if they were declared with the keyword volatile, meaning that
references to global objects cannot be optimized away.

=

+Obbnum Specify the maximum number of basic blocks allowed in a procedure which is to be
optimized at level 2. If the limit is exceeded, a warning is emitted and level 1
optimization is performed for the remainder of the function. The default value for
this limit is 500. This option implies ~O.

+P Optimize the application based on profile data found in the database file
flow.data, produced by compilation with +I. See ld(1), +I, +df, and +pgm
for more details. This option is incompatible with -G, -g, +m, +0, -p, -S, and -
Y.

+pgmname Specify a profile database lookup name within the database file name. No white

space is permitted between +pgm and name. +pgm requires that either +I or
+P be specified. See also ld(1), +P, +I, and +df for more details.

+T Inhibits the automatic promotion of float to double when evaluating expressions
and passing arguments. This option is ignored and a warning produced if the
ANSI mode is in effect (see also +£).

+Rnum Allow only the first num regilster variables to actually have the register
class. Use this option when the register allocator issues an out of general
registers message.

+unum Allow pointers to access non-natively aligned data. This option alters the way that
the compiler accesses dereferenced data. Use of this option may reduce the
efficiency of generated code.

1 Assume single byte alignment. Dereferences are performed with a
series of single-byte loads and stores.

2 Dereferences are performed with a series of two-byte loads and stores.
4 Dereferences are performed with a series of four-byte loads and stores.

+wn Specify the level of the warning messages. The value of n can be one of the follow-
ing values:

1 All warnings are issued.

88 ~8- HP-UX Release 9.0: August 1992

cc(l)

+Y

FILES

file.c

file.o

a.out

/tmp /ctm*
/usr/tmp/ctm*
/1ib/ccom
/11b/cpp
/1lib/cpp.ansi
/bin/as
/bin/la
/1ib/crt0.o
/1ib/mcrt0.o
/1ib/gcrt0.o
/1ib/1libc.a
/1ib/1ibe.sl
/1ib/1ibp/libc.a
/usr/include

Series 300/400

/1lib/ccom.ansi
/1lib/cpassl
/11b/cpassl.ansi
/1lib/cpass2
/1ib/c.c0
/1lib/c.cl
/1lib/c.c2

Series 700/800

/lib/icrt0.o

2
3

cc(1)

Only warnings indicating that code generation might be affected are
issued. Equivalent to the compiler default without any w opts.
No warnings are issued. Equivalent to the -w option.

Generate static analysis information for all global identifiers not seen in the origi-
nal source file. This option only has effect if used in conjunction with the -y

option.

input file

object file

linked output

default temporary files

default temporary files

C compiler

Ppreprocessor

preprocessor for ANSI C

assembler (see as(1))

link editor (see Id (1))

runtime startoff

startoff for profiling via prof{1)

startoff for profiling via gprof(1)

standard C library (archive version), see HP-UX Reference Section (3).
standard C library (shared version), see HP-UX Reference Section (3).
C library for profiled programs (archive version)

standard directory for #include files

ANSI C compiler

pass 1 of the optimizing compiler

pass 1 of the optimizing ANSI compiler
pass 2 of the optimizing compiler
procedure in-liner

global optimizer

peephole optimizer

Startoff for Instrumentation via +I

/usr/lib/nls/$LANG/cc.cat

/usr/lib/uccom

C Compiler message catalog
Stand-alone code generator

/usr/lib/sched.models processor implementation file

SEE ALSO

Program management and analysis tools:

lint(1)
¢b(1)
exref(1)

C program checker/verifier
C program beautifier, formatter
generate C program cross-reference

Profiling and debugging tools:

gprof(1) display call graph profile data
prof(1) display profile data
monitor(3C) prepare execution profile
xdb(1) C, C++, FORTRAN, and Pascal symbolic debugger
cdb(1) C, C++, FORTRAN, and Pascal symbolic debugger
adb(1) absolute debugger
System tools:
as(1) translate assembly code to machine code
cpp(1) invoke the the C language preprocessor
1% 769] invoke the link editor
Miscellaneous:

HP-UX Release 9.0: August 1992

89

cc(l) ce(l)

matherr(3M) trap math errors

fpgetround(3M) floating-point mode-control functions

strip(1) strip symbol and line number information from an object file
crt0(3) execution startup routine

end(3C) symbol of the last locations in program

exit(2) termination of a process

Tutorials and Standards Documents:
B. W. Kernighan and D. M. Ritchie, The C Programming Language, Prentice-Hall, 1978.
American National Standard for Information Systems - Programming language C, ANS X3.159-1989

STANDARDS CONFORMANCE
cc: SVID2, XPG2, XPG3

c89: POSIX.2

90 -10- HP-UX Release 9.0: August 1992

cd(1) cd(1)

NAME
cd - change working directory

SYNOPSIS
cd [directory]

DESCRIPTION
If directory is not specified, the value of shell parameter HOME is used as the new working directory. If
directory specifies a complete path starting with /, ., . ., direcfory becomes the new working directory. If
neither case applies, cd tries to find the designated directory relative to one of the paths specified by the
CDPATH shell variable. CDPATH has the same syntax as, and similar semantics to, the PATH shell vari-
able. cd must have execute (search) permission in directory.

cd exists only as a shell built-in command because a new process is created whenever a command is exe-
cuted, making cd useless if written and processed as a normal system command. Moreover, different
shells provide different implementations of cd as a built-in utility. Features of cd as described here may
not be supported by all the shells. Refer to individual shell manual entries for differences.

If ecdis called in a subshell or a separate utility execution environment such as:
find . -type d -exec cd {}; -exec foo {};
(which invokes foo on accessible directories)

cd does not affect the current directory of the caller’s environment. Another usage of cd as a stand-alone
command is to obtain the exit status of the command.

EXTERNAL INFLUENCES
International Code Set Support
Single- and multi-byte character code sets are supported.

EXAMPLES
Change the current working directory to the HOME directory from any location in the file system:

cd
Change to new current working directory f£oo residing in the current directory:

cd foo
or
cd ./foo

Change to directory foobar residing in the current directory’s parent directory:
cd ../foobar

Change to the directory whose absolute pathname is /usr/local/lib/work.files:
cd /usr/local/lib/work.files

Change to the directory proj1/schedule/staffing/proposals relative to home directory:
cd $HOME/projl/schedule/staffing/proposals

VARIABLES
The following environment variables affect the execution of cd:

HOME The name of the home directory, used when no directory operand is specified.

CDPATH A colon-separated list of pathnames that refer to directories. If the directory operand
does not begin with a slash (/) character, and the first component is not dot or dot-dot,
cd searches for directory relative to each directory named in the CDPATH variable, in
the order listed. The new working directory is set to the first matching directory
found. An empty string in place of a directory pathname represents the current direc-
tory. If CDPATH is not set, it is treated as if it was an empty string.

RETURN VALUE
Upon completion, cd exits with one of the following values:

HP-UX Release 9.0: August 1992 -1- 91

cd(1) cd(1)

(1] The directory was successfully changed.
>0 An error occurred. The working directory remains unchanged.
SEE ALSO

csh(1), pwd(1), ksh(1), sh-posix(1), sh(1), chdir(2).

STANDARDS CONFORMANCE
cd: SVID2, XPG2, XPG3, POSIX.2

92 -2- HP-UX Release 9.0: August 1992

cdb (1) Series 300/400 Only cdb (1)

NAME
cdb, fdb, pdb - C, C++, FORTRAN, Pascal symbolic debugger

SYNOPSIS
cdb [-ddir]{-r file]1[-R file 1[-p file] [~P process_ID 1 [-L][-1 library][-1 file] [-o file] [-e file] [-S
num][objectfile [corefile 1]

£db [cdb options)

pdb [cdb options]

DESCRIPTION
cdb, £db, and pdb are alternate names for a source level debugger for C, C++ HP FORTRAN, and HP Pascal
programs. It provides a controlled environment for their execution. Capabilities are similar to xdb, but
with an older command syntax. The HP-UX Symbolic Debugger User’s Guide provides a comprehensive
description of xdb, and includes a section on differences between xdb and cdb.

objectfile is an executable program file having zero or more of its component modules compiled with the
debug option turned on (enabled by the -g option of the cc, £77, pe, and CC compilers). The support
module /usr/lib/end.o must be included as the last object file linked, except for libraries included
with the -1 option to 1d (see Id(1)). The support module is included automatically when 14 is invoked
as part of a compile command that uses the -g option. The default objectfile is a.out. Note that by
default 14 links in shared libraries instead of archive libraries.

corefile is a core image from a failed execution of objectfile. The default corefile is core.

Options
cdb recognizes the following command-line options:

-4a dir Specify dir as an alternate directory where source files are located.

-r file Specify a record file which is invoked immediately (for overwrite, not for append).

-R file Specify a restore state file, which is processed before the -p option (if any) and after the
-r option (if any).

-p file Specify a playback file, which is invoked immediately.

-P process ID Specify the process ID of an existing process that the user wishes to debug.

-L Use the line-oriented interface.

-1 library Pre-load information about this shared library, -1 ALL means always pre-load shared
library information.

-1 file Redirect standard input to the child process from the designated file or character device.

-0 file Redirect standard output from the child process to the designated file or character device.

-e file Redirect standard error from the child process to the designated file or character device.

-8 Enable debugging of shared libraries.

-S num Set the size of the string cache to num bytes (default is 1024, which is also the minimum).

At startup, cdb executes commands from the file .cdbrc (.£dbre for FORTRAN and .pdbrc for Pas-
cal) if it exists in the user’s home directory as specified by the environment variable HOME.

ENVIRONMENT VARIABLES
Display
TERM Specifies the terminal type. There is no default.
LINES Specifies the window height in lines of text. Default is 24 if not otherwise determinable.

COLUMNS Specifies the window width in text columns. default is 80 if not otherwise determinable.

Command Line Editing
CDBHIST Specifies the history file. Default is $HOME/ .cdbhist.

HISTSIZE Specifies the actual number of commands allowed in the history file. Default is 128.

HP-UX Release 9.0: August 1992 -1- 93

cdb(1) Series 300/400 Only cdb(1)

CDBEDIT This variable specifies the editing mode (vi, emacs, or gmacs). Default is to match the
environment variable VISUAL or EDITOR; otherwise, there is no default.
Native Language Support

LANG Determines the local language equivalent of y (for yes/no queries). LANG also determines
the locale in which messages are displayed. Default is “C”.

201=10]

tability when reading or writing character and string data. If LC_CTYPE is not specified
in the environment or is set to the empty string, the value of LANG is used as the default.

International Code Set Support
Single- and multi-byte character code sets are supported.

LOCATION SYNTAX

LC_CTYPE Determines the interpretation of text as single- and/or multi-byte characters and their prin-

line A number that refers to a particular line in a file.
location A particular line in a file and its corresponding address in the user’s program. location has
the following general forms:
line
#label

file] sline]
[file: Jproc[:proc[...11[:line | #label]
[class]z sproc[sline | # label]
To reference code addresses symbolically, use:
procitline
[[class s : |proc#line
VARIABLE IDENTIFIERS
Variables are referenced exactly as they are named in your source file(s). Case sensitivity is controlled by
the Z command.

To determine the value of some variable var, various methods can be used, depending on where and what it
is:

var Search for var first as a local in the current procedure (or the most recent instance of the
current procedure), next as a member of that procedure’s class, or finally as a global.

class : svar Search class for variable.

proc .var

[[class]: :1proc.[class s : Jvar
Search for var in the current or most recent instance of proc. A leading :: indicates a glo-
bal.

proc .depth .var

[[class]: :1proc .depth .[class s : Jvar

Use the instance of proc that is at depth depth (exactly), instead of the current or most
recent instance.

svar
s svar Search for a global (not local) variable named var.
. dot is shorthand for the last thing viewed.
SPECIAL VARIABLES
Special variables are names for things that are not normally directly accessible. Special variables include:
Svar The debugger has room in its own address space for several user-created special variables
of type long.
$pc, $fp, $sp,
$40, ete. These are the names of the program counter, frame pointer, stack pointer, CPU general

registers, ete.

94 -2- HP-UX Release 9.0: August 1992

cdb(1)

$result

$signal
$lang

$print

$line
$malloc

$cBad

$pagelines

$fpa

sfpa_reg

$cplusplus

COMMANDS

Series 300/400 Only cdb(1)

This is used to reference the return value from the last command-line procedure call. It can
also be referenced as $short and $long.

This lets you see and modify the current child process signal number.

This lets you see and modify the current language. Possible values are: C, C++, FORTRAN,
Pascal,default.

Alters the behavior of the print command when printing character data. Values that
can be assigned are ascil, native, and raw.

This lets you see and modify the current source line number.

This lets you see the current amount of memory (bytes) allocated at run-time for use by the
debugger itself. .

This lets you see and modify the numBer of machine instructions the debugger will step
while in a non-debuggable procedure before setting an up-level breakpoint and free-
running to it.

This lets you set the number of lines per “page” of debugger output. The prompt - -
More- - occurs between pages. Values of zero or less turn off paging.

If this is set to a non-zero value, any sequence of machine instructions which effectively
constitute a single floating-point-accelerator instruction are treated as a single instruction
for machine-level single-stepping and display.

If $fpa is set to a non-zero value, $fpa_reg indicates which address register is used in
floating-point-accelerator instruction sequences. 0 corresponds to register a0, 1 to al,
etc. The default value is 2.

This is interpreted as a set of flags to control behavior of certain C++ capabilities.

bit 0 Set means print full base class information at each occurrence.
bit 1 Set means bpe sets breakpoints on member functions of base classes,
. also.
bit 2 Set means bi sets breakpoints on member functions of base classes,
also. .

The default for all bits is clear. Some commands take a -c or -C argument which causes
the action to be as if the appropriate bit of $cplusplus was clear (-c) or set (-C).

The debugger has a large number of commands for viewing and manipulating the program being debugged.
They are explained below and are grouped by functional similarity.

Window Mode Commands
These commands control what is displayed in the source window. The source window by default comes up
in source mode for viewing source code. If assembly language instructions are needed, the disassembly
mode can be selected. Registers are also shown in this mode. If both assembly instructions and source code
are needed, the split-screen mode can be selected. Here are the commands:

td
ts
gr
fr

+r
-r

ws size
u

Toggle disassembly mode.
Toggle split screen mode.
Display the general registers when the debugger is in disassembly (non-split-screen) mode.

Display the floating point registers when the debugger is in disassembly (non-split-screen)
mode.

Scroll the floating-point register display forward four lines.
Scroll the floating-point register display back four lines.
Set the size of the source viewing window.

Update the screen to reflect the current location.

HP-UX Release 9.0: August 1992 -3- 95

- edb(1)

96

Series 300/400 Only cdb(1)

U Clear and redraw the screen.

Path Map Commands
Path maps can be used to redirect portions of a source tree to different directories. Here are the commands:

apm old_path [new_path]

lpm
dpm [number |

dir directory

Add a path map to the list of path maps.
List path maps. The list is numbered for use with the dpm command.

*] Delete path map. Default number is 1 (most recent path map). An * deletes all
path maps.

Add directory to the list of alternate directory search paths for source files.

File Viewing Commands
These commands may change the current viewing position, but they do not affect the next statement to be
executed in the child process, if any. Here are the commands:

e
e location
[depth] E

L
line

[line] p [count]

+ [lines]
- [lines]

[line] w [size]

[line]l W [size]

Show the current file, procedure, line number, and source line.
View the source at the specified location.

Similar to e, but sets viewing location to the current location in proc on the stack at
depth (not necessarily the first executable line in the procedure).

This is a synonym for OE.
View the source line number /ine in the current file.

View one (or count) lines starting at the current line (or line number line). With the line
oriented interface, if multiple lines are printed, the current line is marked with a = in
the left-most column.

Move to lines (default one) lines after the current line.
Move to lines (default one) lines before the current line.

For the line oriented interface, print a window of text containing size (default 11) lines
centered around the current line (or line). The target line is marked with a = in the
left-most column if multiple lines are printed.

Same as w, but size defaults to 21 lines.

+w [size]

+W [size] View a window of text of given or default size, beginning at the end of the previous win-
dow if the previous command was a window command; otherwise at the current line.

-w [size]

-W [size] View a window of text of given or default size, ending at the beginning of previous win-
dow if the previous command was a window command; otherwise at the current line.

/ [string] Search forward through the current file for string, starting at the line after the current line.

? [string] Search backward for string, starting with the line before the current line.

n Repeat the previous / or ? command using the same string as the last search, starting at

the current location being viewed.
N Same as n, but the search goes in the opposite direction from that specified by the previous

/ or ? command.

Display Formats

The display formats tell the debugger’s data viewing commands how output should be formatted. A format
is of the form [countlformchar [size]. For example, p abc\4x2 prints, starting at the location of abe,
four two-byte numbers in hexadecimal.

Formats that print numbers use lowercase characters to represent integer data types and uppercase to
represent long data types. For example, O printsin long octal.

The following formats are available:

—4- HP-UX Release 9.0: August 1992

cdb(1) Series 300/400 Only cdb (1)

n Print in the "normal” format, based on the type.

@|p) Print in decimal (as integer or long).

@lo Print in unsigned decimal (as integer or long).

(ol0) Print in octal (as integer or long).

x|x) Print in hexadecimal (as integer or long).

(z|2) Print in binary (as integer or long).

blB) Print a byte in decimal (either way).

c Print a character.

c Print a wide-character.

(el®) Print in "e" floating point notation (as £1oat, double, or long double).

(£]® Print in £ floating point notation (as £loat, double, or long double).

(gle) Print in g floating-point notation (as £1oat, double, or long double).

i Print a disassembled machine instruction.

a Print a string using expr as the address of the first byte.

w Print a wide-character string using expr as the address of the first element.

w Prin: a wide-character string using expr as the address of a pointer to the first ele-
ment.

8 Print a string using expr as the address of a pointer to the first byte.
Show the type of expr (usually a variable or procedure name).

T This is identical to the t format except for C++ classes and struct objects where base
class and struct type information will also be displayed.

P Print the name of the procedure containing address expr.

r Print the template of an object (C++).

R Print the template of an object with base classes displayed (C++).

s Do a formatted dump of a structure.

k This is identical to the S format.

K This is identical to the S format except for C++ class and struct objects where base

class and struct data will also be displayed.

There are some shorthand notations for size:

b 1 byte (char).

s 2 bytes (short).

1 4 bytes (Long).

D 8 bytes (double). Can only be used with floating-point formats.

L 16 bytes (long double). Can only be used with floating-point formats.

Data Viewing and Modification Commands
expr If expr does not resemble anything else (such as a command), it is handled as if you had

typed expr /n (print expression in normal format), unless followed by ; or }, in which case
nothing is printed.

expr /format Print the contents (value) of expr using format.
expr?format Print the address of expr using format.
A[[/Yformat] Back up to the preceding memory location (based on the size of the last thing displayed).

HP.UX Release 9.0: August 1992 -5-— 97

cdb(1) Series 300/400 Only cdb(1)

classs : Print the values of all static data members of class.

1 [proc(.depth]]
1 [[[class]: : [procl.depth1]]
List all parameters and local variables of the current procedure (or of proc, if given, at the

specified depth, if any).
la List all assertions.
1b List all breakpoints.
1a List all Qirectories (where to search for files).
1s1 List all shared libraries known to the debugger.
1z List all zignals (signal actions).

lc [string] List all (or matching) common blocks in the current procedure (FORTRAN).

1f [string] List all (or matching) files (source files used to build objectfile).

1g [string] List all (or matching) global variables.

11 [string][@library]
List all (or matching) 1abels.

Im [string] List all (or matching) macros.

1p [[class]: : 1[string]
List all (or matching) procedure names.

1r [string] List all (or matching) registers.

1s [string] List all (or matching) special variables (except registers).

1x List exception stop-on-throw and -catch state. (C++)

lcl [string] List all (or matching) classes. (C++)

lct [string] List all (or matching) class templates. (C++)

1tf [string] List all (or matching) template functions. (C++)

1ft [string] List all (or matching) function templates. (C++)

1o [lclass]: :][string]
List all (or matching) overloaded functions. (C++)

mm [string] Show a memory map of all currently loaded shared libraries and the main program.

Stack Viewing Commands

[depth] t Trace the stack for the first depth (default 20) levels.

[depth]T The same as t, but local variables are also displayed using /n format (except that all
arrays and pointers are shown as addresses, and structures as first word only).

up [offset] Move up (decreasing depth) offset levels in the stack. The default value of offset is 1.

down [offset] Move down (increasing depth) offset levels in the stack. The default value of offset is 1.

top Move to the top of the stack (this is the same as 0 E).

Job Control Commands

The parent (debugger) and child (objectfile) processes take turns running. The debugger is only active while

the child process is stopped due to a signal, includes hitting a breakpoint, or terminated for whatever rea-

son.

Here are the job control commands:

r [arguments] Run a new child process with the given or previous argument list, if any.

R Run a new child process with no argument list.
Terminate (kill) the current child process, if any.

[count] c [line]
Continue after a breakpoint or a signal, ignoring the signal, if any. If count is given, the
current breakpoint, if any, has its count set to that value. If line is given, a temporary
breakpoint is set at that line number, with a count of -1.

[count] C [line]
Continue just like ¢, but allow the signal (if any) to be received. This is fatal to the child
process if it does not catch or ignore the signal.

[count] s Single step 1 (or count) statements.

[count] S Single step like 8, but treat procedure calls as single statements (do not step "into” them).
[count] J Single step 1 (or count) machine instructions.

‘[count] T Single step like J, but treat procedure calls as single instructions (do not step "into" them).
The 8, S, 3, and J commands pass the current signal (like C). Set $signal = 0 if necessary, to prevent
this.

Breakpoint Commands
The debugger provides a number of commands for setting and deleting breakpoints. Associated with any

98 -6~ HP-UX Release 9.0: August 1992

cdb(1) Series 300/400 Only cdb(1)

breakpoint are three attributes:

location A particular lire in a file and its corresponding address in the user’s program, if execut-
able code exists for that line.

count The number of times the breakpoint is encountered prior to recognition. Negative
counts are temporary and positive counts are permanent.

commands Actions to be taken upon recognition of a breakpoint before waiting for command input.

This is a list of debugger commands separated by ; and enclosed in { }.
Each breakpoint can be individually activated or suspended, and there is an overall breakpoint mode which
can be toggled. If any breakpoint is added or activated, or if all breakpoints are suspended, the global mode
is toggled automatically.
Here are the breakpoint commands:
1b
B List all breakpoints.

{line] b [commands]

b [location] [commands]
Set a permanent breakpoint at the specified line (in the current procedure) or the specified
location. Default is the current location.

[number] & Delete breakpoint number, or at the current location.

D [b] Delete all breakpoints (including "procedure" breakpoints).

bl expr.proc [\count][commands]
After evaluating expr to what must be a class instance, set an "instance" breakpoint at the
first executable line of proc for the instance’s class.

bi [-e|-c] expr [commands]
After evaluating expr to what must be a class instance, set "instance” breakpoints at the
first executable line of all member functions of the instance’s class. The -c option indi-
cates only members of the designated class. The -C option indicates members of base
classes as well as members of the designated class.

bpc [-c | ~C] class [commands]
Set "class" breakpoints at the first executable line of all member functions of class. See the
previous command for information on -¢ and -C.

bpo [[class]: : Jproc [commands]
Set "overload” breakpoints at the first executable line of all overloaded functions with name
proc (which can be qualified by a class).

bp [commands]
Set permanent breakpoints at the beginning (first executable line) of every debuggable pro-
cedure.

bpx [commands]
Set permanent breakpoints at the exit (final executable statement) of every debuggable pro-
cedure.

bpt [commands]
Set permanent breakpoints at the entry and exit (first and final executable statement) of
every debuggable procedure. The given commands are associated with the entry break-
point, and default to Q; 2t ; c.

Dp Delete all "procedure” breakpoints.
Dpx Delete all "procedure exit" breakpoints.
Dpt Delete all "procedure trace” breakpoints.

abc commands
Define a global breakpoint command list to be executed whenever any breakpoint is hit
(normal, instance, class, overload, procedure, procedure exit, or procedure trace).

dbc Delete the global breakpoint command.

For the following commands, if the second character is uppercase, for example, bU instead of bu, the
breakpoint is temporary (count is —1), not permanent (count is 1).

HP-UX Release 9.0: August 1992 -7- 99

cdb(1) Series 300/400 Only cdb (1)

[depth] bb [commands]

[depth] bB [commands]
Set a breakpoint at the beginning (first executable line) of the procedure at the given stack
depth. Default is current procedure.

[depth] bx [commands]

[depth] bX [commands]
Set a breakpoint at the exit (last executable line) of the procedure at the given stack depth.
Default is current procedure.

[depth] bu [commands]

[depth] BU [commands]
Set an up-level breakpoint. Default depth is 1.

[depth] bt [proc] {[commands]

[depth] BT [proc] [commands]
Trace the current procedure (or procedure at depth, or proc). This command sets break-
points at both the entrance and exit of a procedure. By default, the entry breakpoint com-
mands are Q; 2t ; ¢, which shows the top two procedures on the stack and continues. The
exit breakpoint command list is always Q;L;c (print the current location and continue).

address ba [commands]
address bA [commands]
Set a breakpoint at the given code address.

txc Toggle the exception stop-on-catch state.
txt Toggle the exception stop-on-throw state.

xcc [commands]
Define the stop-on-catch command-list.

xtc [commands]
Define the stop-on-throw command-list.

sb [num] Suspend breakpoint number num , or at the current location.

sb * Suspend all breakpoints.

ab [num] Activate breakpoint number num, or at the current location.

ab * Activate all breakpoints.

tb Toggle the overall breakpoint mode between active and suspended.

Auxiliary Breakpoint Commands

The following commands are not strictly part of the breakpoint group, but are used almost exclusively in
command-list arguments to breakpoints or assertions.

if expr {commands} [{commands}]
If expr evaluates to a non-zero value, the first group of commands (the first {} block) is
executed, otherwise it (and the following {, if any) is skipped.

Q If the Quiet command appears as the first command in a breakpoint command list, the nor-
mal announcement of breakpoint at address is not made.

"any string you like"
Print the given string.

Assertion Control Commands

100

Assertions are command lists that are executed before every instruction. If there is an active assertion, the
program is single stepped at the machine-instruction level and runs very slowly.

Each assertion can be individually activated or suspended, and there is an overall assertions mode which
can be toggled. If any assertion is added or activated or if all assertions become suspended, the global mode
is toggled automatically.

Here are the assertion control commands:

-8- HP-UX Releas